
Impact-aware Maneuver Decision with Enhanced
Perception for Autonomous Vehicle

Shuncheng Liu1, Yuyang Xia1, Xu Chen1, Jiandong Xie2, Han Su1,3,*, Kai Zheng1,4,*

1School of Computer Science and Engineering, University of Electronic Science and Technology of China, China
2Huawei Cloud Database Innovation Lab, China

3Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, China
4Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, China

{liushuncheng,xiayuyang,xuchen}@std.uestc.edu.cn, xiejiandong@huawei.com, {hansu,zhengkai}@uestc.edu.cn

Abstract—Autonomous driving is an emerging technology that
has developed rapidly over the last decade. There have been
numerous interdisciplinary challenges imposed on the current
transportation system by autonomous vehicles. In this paper,
we conduct an algorithmic study on the autonomous vehicle
decision-making process, which is a fundamental problem in
the vehicle automation field and the root cause of most traffic
congestion. We propose a perception-and-decision framework,
called HEAD, which consists of an enHanced pErception module
and a mAneuver Decision module. HEAD aims to enable the
autonomous vehicle to perform safe, efficient, and comfortable
maneuvers with minimal impact on other vehicles. In the en-
hanced perception module, a graph-based state prediction model
with a strategy of phantom vehicle construction is proposed to
predict the one-step future states for multiple surrounding vehi-
cles in parallel, which deals with sensor limitations such as limited
detection range and poor detection accuracy under occlusions.
Then in the maneuver decision module, a deep reinforcement
learning-based model is designed to learn a policy for the
autonomous vehicle to perform maneuvers in continuous action
space w.r.t. a parameterized action Markov decision process.
A hybrid reward function takes into account aspects of safety,
efficiency, comfort, and impact to guide the autonomous vehicle
to make optimal maneuver decisions. Extensive experiments offer
evidence that HEAD can advance the state of the art in terms
of both macroscopic and microscopic effectiveness.

Index Terms—Autonomous driving, Perception, Decision

I. INTRODUCTION

Most major cities worldwide experience high levels of

traffic congestion due to the rapid development in urbanization

and vehicle ownership [1]. Typically, road environments or

drivers are to blame for traffic congestion [2]. Environmental

variables like road construction, traffic lights, or a reduction

in the number of lanes (bottleneck) can give rise to traffic

congestion. Additionally, a driver’s poor driving behavior (e.g.,

hard braking and forced lane change) may result in traffic

congestion or even accidents. The latter is more frequent due to

the differences in drivers’ habits [3]. It usually happens when

the traffic density is high, thus even a slight fluctuation in the

traffic flow can generate a ‘domino effect’ and lead to serious

traffic congestion. To avoid such phenomenon, drivers need

to keep good driving behaviors and maintain a safe distance

* Corresponding authors: Kai Zheng and Han Su

between vehicles [4], which are highly challenging, if not

impossible, for human drivers.

With the rapid development of vehicle automation tech-

nology, this goal may be achieved in the future when a

considerable portion of on-road vehicles are autonomous

vehicles. Some dangerous driving behaviors such as speed

driving and drowsy driving can be avoided by gradually

replacing human control with autonomous decision-making

algorithms [5]. Traditional methods have demonstrated that

autonomous vehicles can maintain a constant distance from

surrounding vehicles with the aid of adaptive cruise control

and lane-changing models [6]–[8]. However, these methods

involve a set of rule-matching algorithms and require expert

experience and manual tuning, leading to poor generalizability

with the increasing complexity of autonomous driving scenar-

ios. Considering the mechanism that a driver perceives the sur-

rounding traffic and makes a maneuver decision (lane change

behavior and/or velocity change behavior), it fits well within

the realm of reinforcement learning [9]. Due to the flexible

reward designing and superior optimization effect, there have

been plenty of works utilizing reinforcement learning-based

methods to accomplish vehicle maneuver decisions in the sce-

nario of autonomous driving [10]–[13]. These reinforcement

learning-based approaches mainly optimize the driving safety,

efficiency, and comfort of autonomous vehicles, leaving the

impact on other surrounding vehicles and eventually traffic

conditions largely uninvestigated. Evidently, if autonomous

vehicles make maneuver decisions simply based on their states

without taking the driving conditions of surrounding vehicles

into account, they may cause more serious traffic congestion

or even accidents. Recently, a prediction-and-search frame-

work [14] is proposed to make discrete maneuver decisions,

which considers three impact situations of an autonomous

vehicle on its surrounding vehicles, including queuing, cross-

ing, and jumping the queue. However, it ideally discretizes

the velocity change behavior as speed-up, speed-down, and

maintain speed, which lacks effectiveness in continuous action

space. Further, it still relies on hand-crafted rules for deter-

mining different impact situations, which cannot deal with the

impact of continuous velocity change behavior [15]. Therefore,

existing decision-making algorithms for autonomous driving

3255

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00250

20
23

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
9-

8-
35

03
-2

22
7-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

55
15

.2
02

3.
00

25
0

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

cannot effectively reduce the impact on surrounding vehicles.

To sum up, an ideal decision framework for the autonomous

vehicle can perform safe and comfortable maneuvers with

high driving efficiency and minimal impact on surrounding

vehicles. In particular, reducing the impact plays a vital role

in addressing poor driving behaviors and reducing traffic

congestion or accidents. Intuitively, one can embed a tra-

jectory prediction model [14], [16] in perception modules

(with onboard sensors), which not only capture the current

state of surrounding vehicles, but also proactively anticipate

their future behaviors, and then utilize a deep reinforce-

ment learning-based model to make maneuver decisions [9].

However, the intuition will face two main challenges: (1)

The states of surrounding vehicles are not always observable

due to sensor limitations like detection range and occlusion,

making the trajectory prediction models less effective. (2)

Reinforcement learning-based models struggle to balance the

factors of safety, efficiency, comfort, and impact for complex

vehicle maneuvers, and it is also challenging to measure the

impact factor. In this work, we aim to address the above

challenges and enable the autonomous vehicle to perform

safe and comfortable maneuvers while maximizing its average

velocity and minimizing its impact on surrounding vehicles.

To this end, we proposed a novel perception-and-decision

framework, called HEAD, which consists of an enHanced

pErception module and a mAneuver Decision module. In the

enhanced perception module, we propose a state prediction

model to predict the one-step future states for multiple sur-

rounding vehicles in parallel. To deal with the incomplete

historical states caused by sensor limitations, it first constructs

phantom vehicles based on observable surrounding vehicles

and organizes their relationships using spatial-temporal graph,

and then utilizes a graph attention mechanism with an LSTM

to enable vehicle interactions and parallel prediction. For the

maneuver decision module, it first receives the future states of

surrounding vehicles and formulates the maneuver decision

task as a Parameterized Action Markov Decision Process

(PAMDP) with discrete lane change behaviors and continuous

velocity change behavior, and then uses a deep reinforcement

learning-based model and a properly designed reward function

to solve the PAMDP, which learn an optimized policy for the

autonomous vehicle to achieve our objective. In summary, we

make the following contributions:

• We develop a perception-and-decision framework that en-

ables the autonomous vehicle to perform safe, efficient, and

comfortable maneuvers with minimal impact on other vehicles.

• We propose a graph-based state prediction model with

a strategy of phantom vehicle construction to solve sensor

limitations and support high-accuracy prediction in parallel.

• We propose a deep reinforcement learning-based model

and a hybrid reward function to make maneuver decisions in

continuous action space that follows a parameterized action

Markov decision process.

• We conduct extensive experiments to evaluate HEAD on

real and simulated data, verifying the effectiveness on both

macroscopic and microcosmic metrics.

II. OVERVIEW

A. Preliminary Concepts

Environment. We consider an interactive environment where

there are one autonomous vehicle A and a set of conventional

vehicles C traveling on a straight multi-lane road. For the sake

of simplicity, parking and turning are not considered for now.

The autonomous vehicle can obtain the states (i.e., locations

and velocities) of surrounding conventional vehicles through

its sensors, and perform a maneuver at each time instant t
within a target time duration T of interest.

Lane. A lane is part of the road used to guide vehicles

in the same direction. Herein, all the lanes are numbered

incrementally from the leftmost side to the rightmost side,

i.e., l1, l2, . . . , lκ, where l1 and lκ indicate the leftmost lane

and rightmost lane, respectively.

Time Step. In order to model the problem more concisely,

we treat the continuous time duration as a set of discrete

time steps, i.e., T = {1, 2, . . . , t, . . .}. We denote Δt as

the time interval between two consecutive time steps, which

serves as the minimum frequency for the autonomous vehicle

to perform maneuvers. Following the settings used in the

previous work [14], [17], the time granularity in this work

is set to 0.5 seconds (i.e., Δt = 0.5s).

Location. (Ct
i .lat, C

t
i .lon) and (At.lat, At.lon) indicate the

locations of Ci and A, respectively, at time step t, where

lat denotes the lateral lane number and lon refers to the

longitudinal location of a vehicle traveled from the origin.

dlon(C
t
i , A

t) denotes the relative longitudinal distance be-

tween Ci and A at time step t, which can be calculated as

follows:
dlon(C

t
i , A

t) = Ct
i .lon−At.lon (1)

In addition, the dlat(C
t
i , A

t) denotes the relative lateral dis-

tance between Ci and A at time step t, which can be calculated

as follows:

dlat(C
t
i , A

t) = (Ct
i .lat−At.lat) ∗ widl (2)

where widl is the width of a lane. An advantage of using

this type of lane-aware location is to allow us to focus on the

lane change behavior itself without worrying about the lateral

location of the vehicle.

Velocity. Ct
i .v and At.v indicate the longitudinal velocities of

Ci and A, respectively, at time step t. v(Ct
i , A

t) denotes the

relative longitudinal velocity between Ci and A at time step

t, which can be calculated as follows:

v(Ct
i , A

t) = Ct
i .v −At.v (3)

Benefiting from the discrete time step and the lane-aware

location, the lateral motion between two consecutive time

steps is assumed to be the uniform motion [14], [18], so

we focus on the longitudinal velocity in this work. In the

rest of the paper, we use velocity and longitudinal velocity

interchangeably when no ambiguity is caused.

Maneuver. A maneuver is a pair of a lateral lane change
behavior and a longitudinal velocity change behavior simul-

taneously performed by a vehicle [19]. (At.b, At.a) represents

3256

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

�������	
���
��	�������
����

�������	������
�����

����
�����	���������	
��
������

������	������	��	����������
���!��������	
���
���

����������������	�����

�� ������	�����

"�#���

�����$ %���
���
$

������� &���
�

'$(���	"�#���	���
����

�)��#��* �)��#��*

�������	����	
���� �	+���!���

��� ��������	

���
��$	���� �	

+���!���

�����!��

+��,-)	�,�
������

����

�����.	��
�����	/	
���
��$ �����	����������

�
��
��
�

�����	
��

�	
�����������
 ���
��
���
	�����������

Fig. 1. HEAD Framework Overview

the maneuver of A at time step t, where b is one of the three

lateral lane change behaviors: change lane to left (ll), change
lane to right (lr), and lane keep (lk) (i.e., b ∈ {ll, lr, lk}), and

a refers to the longitudinal acceleration. Since ll and lr are

assumed to be the uniform motions, the lateral acceleration

can be ignored.

Restrictions. We pose some traffic restrictions on all vehicles:

(1) Speed limit. All lanes are subject to two speed limit, i.e.,

vmin and vmax.

(2) Lane change restriction. A vehicle can only change to an

adjacent lane at each time step.

(3) Velocity change restriction. The longitudinal acceleration

of a vehicle is bounded between −a′ and a′.
Objective. In this work, our objective is that the autonomous
vehicle can perform safe and comfortable maneuvers while
maximizing its average velocity and minimizing its impact on
surrounding conventional vehicles.

B. Framework Overview

Figure 1 shows the architecture of our framework HEAD,

which consists of two components: enhanced perception mod-
ule and maneuver decision module. Firstly, the enhanced

perception module obtains the states of surrounding conven-

tional vehicles through the onboard sensor, a graph-based state

prediction model (LST-GAT) constructs phantom vehicles

based on observable surrounding vehicles and organizes their

relationships using spatial-temporal graph structure, and then

utilizes a graph attention mechanism with an LSTM to predict

future states of surrounding conventional vehicles in parallel.

Secondly, the future states are fed into the maneuver decision

module as augmented states, and then a deep reinforcement

learning-based model (BP-DQN) and a hybrid reward function

are proposed to learn a policy for the autonomous vehicle to

perform maneuvers with discrete lateral lane change behaviors

and continuous longitudinal velocity change behavior.

III. ENHANCED PERCEPTION

To reduce the impact of the autonomous vehicle on sur-

rounding conventional vehicles, it is necessary for an automo-

tive perception module to predict the future trajectories of sur-

rounding conventional vehicles. However, simply embedding

a trajectory prediction model in a perception module will face

poor applicability, accuracy, and efficiency in the scenario of

autonomous driving. Thus, we propose an enhanced perception

module that can make use of the limited historical states of

the surrounding conventional vehicles to predict their future

states with high accuracy and efficiency. In this section, we

first analyze the limitations of existing perception modules and

trajectory prediction models, and then we propose a graph-

based deep learning model with a strategy of phantom vehicle

construction for achieving our state prediction task.

A. Limitations of Existing Methods

Traditional Perception Modules. The traditional perception

modules of the autonomous vehicle perceive the interac-

tions with the surrounding conventional vehicles through sen-

sors [12], [20], [21], e.g., cameras, LiDAR, Ultrasonic, etc.

Specifically, they acquire the real-time states (i.e., locations

and velocities) of the surrounding conventional vehicles [22],

and feed them into the decision modules [14] to make ma-

neuver decisions [23]. However, they struggle to achieve our

objective due to the following reasons: (1) They discard more

historical states of conventional vehicles that imply their driv-

ing preferences and moving tendencies. (2) They ignore the

future states of conventional vehicles that reflect their possible

changes in driving conditions. Apparently, without taking these

enriched states into account, the autonomous vehicle cannot

reduce the impact on the surrounding conventional vehicles,

and may cause more traffic congestion or even accidents.

Trajectory Prediction Models. In order to remedy the above

problems, the most straightforward solution is to utilize the

sequence of historical states to predict the sequence of future

states (namely future trajectory) for each surrounding con-

ventional vehicle of the autonomous vehicle, i.e., embedding

the trajectory prediction models to the traditional perception

modules [14]. Recently, with a success achieved in applying

RNN [24] to model non-linear temporal dependencies in

sequence learning tasks, there have been plenty of works [25]–

[28] utilizing RNN based encoder-decoder architectures to

predict the future trajectories of vehicles. However, directly

using these learning-based trajectory prediction models usually

leads to unsatisfactory results due to the following reasons:

(1) Their applicability is poor, since they assume that the

states of all surrounding conventional vehicles are always

observable, which is not a practical assumption in autonomous

driving applications. A more realistic approach should always

consider sensor limitations like detection range and occlusion.

(2) Their accuracy of the predicted future trajectories decreases

over time, and only the first or first few predicted states are

reliable. (3) Their inference processes are time-consuming,

since they do not support parallel prediction and require

separate calculations for each predicted vehicle. Therefore,

directly using the trajectory prediction models to enhance

3257

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

the traditional perception modules will not only reduce the

efficiency of perception, but also introduce additional errors

for downstream decision modules.

Opportunities. Accordingly, there are three challenges in

implementing an ideal perception module: 1) how to deal

with the incomplete historical states that follow the sensor

limitations; 2) how to ensure the high-accuracy trajectory

prediction; and 3) how to speed up the efficiency of trajectory

prediction. Next, we will analyze the opportunities that can

remedy them.

(1) Sensor limitations. Most automotive sensors have lim-

ited observability. For example, a LiDAR detects objects at

a distance of up to 90m–250m [29], [30], and it cannot

accurately detect objects through obstacles due to the weak

reflection [31], [32]. Other sensors like cameras and RADAR

also have limited detection ranges and poor detection accuracy

under occlusions [22], [33]. Thus, the availability of most tra-

jectory prediction models will be affected by incomplete input

states as they assume that all surrounding vehicles are always

observable. If we simply ignore the unobservable vehicles and

only use the valid input states, the trajectory prediction results

will be unconstrained, causing inaccurate predictions. More

importantly, the autonomous vehicle may encounter blind-

spot accidents due to inaccurate predictions and unobservable

vehicles [34]. Intuitively, we can construct a ‘phantom vehicle’

for every blind spot caused by the sensor limitations. Although

these vehicles are virtual, they can be preset with suitable

locations and velocities, so that a perception module can make

trajectory predictions more carefully, and the autonomous

vehicle can make safer maneuver decisions.

(2) Accuracy. For existing trajectory prediction models, the

accuracy of the predicted future trajectories decreases over

time, which is caused by two facts. From the physical view, the

nearer the predicted future state, the more relevant it is to the

historical states [16]. From the modeling view, the sequential

decoding schema will accumulate errors over time [35]. The

most straightforward solution is to predict the first future

state for each surrounding conventional vehicle, which reduces

multi-step trajectory prediction to one-step state prediction.

This idea is motivated by two aspects. Firstly, one-step pre-

diction not only retains the state with the highest accuracy, but

also reduces the structural complexity of a model. Secondly,

since the autonomous vehicle has to perceive surroundings

and make maneuver decisions at each time step [14], [15],

the one-step state prediction is enough for real-time maneuver

decisions while the long-term future states are superfluous.

(3) Efficiency. Existing trajectory prediction models cannot

perform fast surroundings perception for the autonomous

vehicle. Specifically, they mainly focus on the trajectory

prediction task of one target vehicle [25], [27], [28], [36].

Once the number of surrounding vehicles increases, they need

to separately predict the future states of each surrounding

vehicle to conduct surroundings perception, leading to poor

computational efficiency. This limitation can be solved by

designing a lightweight model that can perform parallel state

prediction for multiple surrounding vehicles. The difficulty

of parallel prediction is how to decode all prediction results

quickly and accurately. One can use multiple decoders to

output the results separately or use a single decoder to output

the results simultaneously [37], [38]. However, these tricks

are difficult to balance efficiency and accuracy due to the

sequential decoding of multi-step prediction. In our context,

we only need to model the interaction of surrounding vehicles

to complete parallel state prediction without redundant decoder

computations, benefiting from the idea of one-step prediction

with high accuracy.

B. State Prediction for Surrounding Conventional Vehicles

According to the above analysis, we need an enhanced

perception module that can 1) deal with incomplete historical

states by constructing reasonable phantom vehicles; and 2)

utilize the processed historical states to predict the one-step

future states for multiple surrounding vehicles in parallel.

Thus, we propose a graph-based state prediction model, called

LST-GAT (Local Spatial-Temporal Graph ATtention), as the

core unit of our enhanced perception module. The main idea

is to first construct phantom vehicles based on observable

surrounding vehicles and organize their relationships using

spatial-temporal graph structure, and then utilize a graph atten-

tion mechanism with an LSTM to enable vehicle interactions

and parallel prediction. We note that our prediction task faces

local spatial states over local time periods caused by sensor

limitations, unlike other global spatial-temporal tasks [27],

[39]–[41] where spatial states are globally known all the time.

In order to adapt to the local spatial-temporal prediction task,

we first design a strategy of phantom vehicle construction

to deal with incomplete historical states, which improves the

applicability of our prediction model. The historical state of

the autonomous vehicle, the surrounding vehicles, and the

constructed phantom vehicles will be organized as a spatial-

temporal graph, which can best preserve the relationships

between vehicles during a historical period [42], [43]. Then a

graph attention mechanism [44] with an LSTM [45] aggregates

the nodes of the spatial-temporal graph with different impor-

tance scores and accomplishes parallel state predictions for

surrounding vehicles, which accurately and efficiently predicts

their one-step future states via a lightweight network structure.

Next, we will formally define our state prediction task and give

a detailed description of LST-GAT model.

State Prediction Task. Considering the interactive environ-

ment introduced in Section II. Our state prediction task is to

predict the one-step future states of a set of target conventional

vehicles around the autonomous vehicle, conditioning on the

historical states of the autonomous vehicle and all surrounding

conventional vehicles observed by the onboard sensor.

The problem can be defined as follows: at time step t,
given the states (i.e., location and velocity) of the autonomous

vehicle A and all observed conventional vehicles Cobs within

the historical period of {t − z + 1, t − z + 2, . . . , t}, we

predict the states of a set of target conventional vehicles Ctar

(Ctar ⊆ Cobs) at time step t + 1. z refers to the number of

3258

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

�

�

�

�

�

�

Fig. 2. Example of Target Conventional Vehicles

historical time steps, and Cobs are observed by the sensor of

A within the detection range R.

Based on the definition, at time step t, the inputs are 1)

(Cτ
i .lat, C

τ
i .lon), C

τ
i .v of each conventional vehicle Ci ∈

Cobs; and 2) (Aτ .lat, Aτ .lon), Aτ .v of the autonomous ve-

hicle A at each time step τ ∈ {t−z+1, t−z+2, . . . , t}. The

outputs are (Ct+1
i .lat, Ct+1

i .lon), Ct+1
i .v of each conventional

vehicle Ci ∈ Ctar at time step t+ 1.

Phantom Vehicle Construction. The phantom vehicle con-

struction needs to complete three steps. The first step is to

select target conventional vehicles from all observed conven-

tional vehicles and check if the target conventional vehicles

and their surrounding vehicles are missing. The second step

is to construct some phantom vehicles to fill in the missing

vehicles based on a properly designed strategy. The final step

is to form a spatial-temporal graph using the historical states

of all considered vehicles.

(1) Step 1. We select target conventional vehicles Ctar from

all observed conventional vehicles Cobs that have the most

effect on the autonomous vehicle A, and we check if Ctar

and their surrounding vehicles are missing due to the sensor

limitations. To be specific, we select six target conventional

vehicles around the autonomous vehicle as shown on the

left side in Figure 2, which covers six key areas centered

on A, i.e., 1) front left, 2) front, 3) front right, 4) rear

left, 5) rear, and 6) rear right areas. This strategy is widely

used [46]–[48] since the six vehicles have the most effect on

the decision of the center vehicle. Further, since we need to

predict the future states of the target conventional vehicles, the

six vehicles around each of them also have the most effect on

their future decisions [14]. Thus, we select six surrounding

vehicles for each target conventional vehicle as shown on

the right side in Figure 2. Ideally, Ctar contains 6 vehicles

(Ctar = {C1, C2, . . . , C6}) and each of them is surrounded by

6 vehicles (Ci.sur = {Ci.1, Ci.2, . . . , Ci.6},i ∈ {1, 2, . . . , 6})1.

However, some of them are always missing due to the sensor

limitations. In addition, if a vehicle is in the leftmost lane or

rightmost lane, its left or right neighbors will be missing inher-

ently. In step 1, we select Ctar and Ci.sur (∀i ∈ {1, 2, . . . , 6})

from Cobs and A. If there is a missing vehicle, step 2 starts,

otherwise, step 3 starts.

(2) Step 2. Once vehicles are found missing, we construct

phantom vehicles to fill them based on a strategy. Before

introducing the strategy, we identify three missing cases:

1) range missing, which is a sensor limitation caused by

the limited detection range; 2) occlusion missing, which is

1The autonomous vehicle A shares its states with C1.6, C2.5, C3.4, C4.3,
C5.2, and C6.1, since each Ci ∈ Ctar is also surrounded by A.

������ 	��� ��	
���!��������	

���
��				�

������ 	
���
��	
������	

� �� �

�����	
��

�������
����	���	&�������	������

�������
����	���	"�� �	������

�������
����	���	0

������	������

�����
��
���
��������
���

�����	
��

1����������

�����	
��

�������
����	���	&�������	������

�������
����	���	"�� �	������

���
��������������

�����	
��

�

� �� �

�

�

Fig. 3. Strategy of Phantom Vehicle Construction

a sensor limitation caused by the poor detection accuracy

under occlusions; and 3) inherent missing, which is sensor-

independent that a center vehicle is in the leftmost or rightmost

lane missing one-side neighbors. As shown in Figure 3, we

first deal with missing target conventional vehicles, and then

deal with missing vehicles around the target conventional

vehicles. Next, we will detail their constructions.

Firstly, for any missing target conventional vehicle Ci ∈
Ctar, we judge whether it is the range missing or the inherent

missing. The two cases can be distinguished by the lateral

lane number of the autonomous vehicle. The inherent missing

exists when A.lat is 1 (leftmost lane) or κ (rightmost lane),

otherwise, the missing target conventional vehicle is the range

missing. If it is the range missing, the historical states of Ci

will be preset as follows:

(Cτ
i .lat, C

τ
i .lon), C

τ
i .v =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Aτ .lat− 1, Aτ .lon+R), Aτ .v Aτ .lat �= 1 and i = 1

(Aτ .lat, Aτ .lon+R), Aτ .v i = 2

(Aτ .lat+ 1, Aτ .lon+R), Aτ .v Aτ .lat �= κ and i = 3

(Aτ .lat− 1, Aτ .lon−R), Aτ .v Aτ .lat �= 1 and i = 4

(Aτ .lat, Aτ .lon−R), Aτ .v i = 5

(Aτ .lat+ 1, Aτ .lon−R), Aτ .v Aτ .lat �= κ and i = 6

(4)

where τ ∈ {t−z+1, t−z+2, . . . , t} and R is the radius of the

sensor detection range. The constructed phantom vehicle for

the range missing is placed as far as the sensor can detect to

make up for the limited detection range. If Ci is the inherent

missing, the historical states will be preset as follows:

(Cτ
i .lat, C

τ
i .lon), C

τ
i .v ={

(0, Aτ .lon), Aτ .v Aτ .lat = 1 and i ∈ {1, 4}
(κ+ 1, Aτ .lon), Aτ .v Aτ .lat = κ and i ∈ {3, 6}

(5)

The constructed phantom vehicle for the inherent missing is

placed outside the leftmost and rightmost lanes as a moving

road boundary.

Then for any missing vehicle Ci.j around Ci (Ci.j ∈
Ci.sur), we first judge whether Ci is a constructed phantom

vehicle or not. If Ci is a phantom vehicle, the historical

states of its surrounding vehicles Ci.sur are filled with zero

states (i.e., zero-padding [49]), since they do not need to be

constructed based on an uncertain vehicle. If Ci is an observed

vehicle, we then determine whether Ci.j is the occlusion

missing or not. We prioritize the occlusion missing as it is most

likely to cause blind-spot accidents [34] compared to the range

and inherent missing. Once we find that Ci.j may be occluded

3259

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

�

�

�

�

�

�

� �

�

� �

�

�

�

�

�

�

�

Fig. 4. Examples of Occlusion Missing

by Ci, we construct a phantom vehicle in the occluded area,

and the historical states will be preset as follows:

(Cτ
i.j .lat, C

τ
i.j .lon), C

τ
i.j .v :=⎧⎪⎨

⎪⎩
(Cτ

i .lat− 1, Cτ
i .lon+ dlon(C

τ
i , A

τ)), Cτ
i .v (i, j)∈{(1, 1), (4, 4)}

(Cτ
i .lat, C

τ
i .lon+ dlon(C

τ
i , A

τ)), Cτ
i .v (i, j)∈{(2, 2), (5, 5)}

(Cτ
i .lat+ 1, Cτ

i .lon+ dlon(C
τ
i , A

τ)), Cτ
i .v (i, j)∈{(3, 3), (6, 6)}

(6)

where dlon(C
τ
i , A

τ) is the relative longitudinal distance be-

tween Ci and A at time step τ defined by Equation (1).

The constructed phantom vehicle for the occlusion missing

is placed in an occluded position, obeying the basic geometry

as shown in Figure 4. If Ci.j is not occluded by Ci, it is

either the range missing or the inherent missing. Therefore,

the phantom vehicle construction for Ci.j is similar to that

of the missing target conventional vehicle Ci. The historical

states of Ci.j are preset as Equation (4) and Equation (5) under

the range missing and the inherent missing, respectively, by

replacing Aτ with Cτ
i .

(3) Step 3. So far, Ctar and Ci.sur (∀i ∈ {1, 2, . . . , 6})

are available, we organize them using spatial-temporal graph

structure. In order to better reflect the relationships between

the autonomous vehicle and a conventional vehicle, we first

replace the historical states of conventional vehicles (Ctar

and Ci.sur) with the states relative to the autonomous vehicle

A, i.e., (dlat(C
τ , Aτ), dlon(C

τ , Aτ)), v(Cτ , Aτ), which are

defined in Section II. The autonomous vehicle still maintains

its raw historical state of (Aτ .lat, Aτ .lon), Aτ .v to indicate

the reference values. Hereafter, we formulate the historical

state vector hCτ
i
∈ R

4 of each Ci ∈ Ctar at each time step

τ ∈ {t− z + 1, t− z + 2, . . . , t} as follows:

hCτ
i
= [dlat(C

τ
i , A

τ), dlon(C
τ
i , A

τ), v(Cτ
i , A

τ), IFCi
] (7)

where IFCi
is a binary code used to indicate if Ci is a phantom

vehicle or not. The historical state vector hCτ
i.j

∈ R
4 of each

Ci.j ∈ Ci.sur at time step τ ∈ {t− z + 1, t− z + 2, . . . , t} is

formulated as follows:

hCτ
i.j

=

⎧⎪⎨
⎪⎩

[A
τ
.lat, A

τ
.lon,A

τ
.v, 0] (i, j) ∈ {(1, 6), (2, 5), (3, 4), (4, 3),

(5, 2), (6, 1)}
[dlat(C

τ
i.j , A

τ
), dlon(C

τ
i.j , A

τ
), v(C

τ
i.j , A

τ
), IFCi.j

] otherwise
(8)

where the first row notes that C1.6, C2.5, C3.4, C4.3, C5.2, and

C6.1 use the raw historical states of A (i.e., hAτ), since each

Ci ∈ Ctar is also surrounded by the autonomous vehicle A,

and 0 indicates IFA = 0.

Next, considering Ctar and Ci.sur as nodes and their

relationships as edges, at time step t, we can construct a

spatial-temporal graph as follows:

G(t) = [g(t− z + 1), g(t− z + 2), . . . , g(t)] (9)

�
�
�
�

�
��
�
�
	�
��
��
��
�
�
	

�
�

�
��
��
�

�
��
��
�	
�
�$
��

������	�����	��	
��
�														�

�

�

����������������	
�����							�

Fig. 5. Network Structure of LST-GAT

where g(τ) = (V(τ), E), τ ∈ {t−z+1, t−z+2, . . . , t}. V(τ)
is the node set and each node contains the state vector of a

vehicle at time step τ . E is the time-independent edge set since

all considered vehicles are available and their relationships are

fixed. The spatial-temporal graph G(t) consists of the spatial

graph g(τ) propagating along the time step τ . To illustrate, �
adding vehicles including Ctar, Ci.sur to the node set. So there

are 42 (6+ 6× 6) nodes in the beginning. � Adding directed

edges from Ci to each Ci.j ∈ Ci.sur ∀i ∈ {1, 2, . . . , 6}. �
Adding directed edges from Ci to Ci (self-loops). Now a

spatial graph is completed. We repeat �–� z times (i.e., from

t− z+1 to t) to form the spatial-temporal graph G(t), which

will be fed to the network.

Network Structure. The network structure of LST-GAT con-

sists of a graph attention mechanism and an LSTM as shown

in Figure 5. Attention mechanisms have been verified to be

effective in various graph-based tasks [44], [50]–[52]. Among

them, the graph attention mechanism [44] especially inspires

us since it shows an effective approach to capture the spatial

relationships between nodes without requiring costly matrix

operations. Thus, we first use a graph attention mechanism

to aggregate some nodes of each spatial graph in the spatial-

temporal graph with different importance scores, which up-

dates the nodes of target conventional vehicles by interacting

with their surrounding vehicles. Then we input the updated

nodes of target conventional vehicles at each historical time

step to an LSTM, which effectively captures their latent

temporal dependencies [26], [45] and outputs their future states

in parallel. We will introduce our graph attention mechanism

and LSTM separately.

Firstly, we apply a sharing attention mechanism to deal with

each spatial graph in the spatial-temporal graph. It receives

G(t) and produces the updated historical state vectors of all

target conventional vehicles. To be specific, we update all

target conventional vehicles by computing importance scores

of each surrounding vehicle of a target conventional vehicle

(including itself) and aggregate their historical states using

the different importance scores. Following the standard proce-

dure [43], [44], for each g(τ) (∀τ ∈ {t−z+1, t−z+2, . . . , t}),

the importance scores α
Cτ
ix

of each Cix ∈ Ci.sur ∪ {Ci}
(∀i ∈ {1, 2, . . . , 6}) is computed as follows:

α
Cτ
ix

=
exp(LeakyReLU(φ2[φ1hCτ

i
‖ φ1hCτ

ix
]))∑

Cix∈Ci.sur∪{Ci} exp(LeakyReLU(φ2[φ1hCτ
i
‖ φ1hCτ

ix
]))

(10)

where φ1 ∈ R
Dφ1

×4 is the linear transformation for historical

states (Dφ1
denotes the dimensions), ‖ is the concatenation

operation, and φ2 ∈ R
2Dφ1 is the linear transformation for

computing an attentional coefficient. Then we update the

3260

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

historical states of each target conventional vehicle Ci ∈ Ctar

as follows:

h′
Cτ

i
=

∑
Cix∈Ci.sur∪{Ci}

α
Cτ
ix
∗ φ3hCτ

ix
(11)

where ∗ represents the element-wise production, φ3 ∈ R
Dφ3

×4

is the linear transformation for historical states (4 refers to the

dimensions of hCτ
ix

).

Secondly, we use an LSTM [45] to capture the latent

temporal dependencies of the updated historical states and

output the future state of each target conventional vehicle

in parallel. Specifically, the updated historical state h′
Cτ

i
of

each target conventional vehicle Ci ∈ Ctar at each time step

τ ∈ {t− z + 1, t− z + 2, . . . , t} is fed into an LSTM, which

outputs the hidden state vector at each time step as follows:

h′′
Cτ

i
= LSTM(h′

Cτ
i
, h′′

Cτ−1
i

;Wl) (12)

where Wl denotes the learnable parameters of LSTM and

h′′
Cτ

i
∈ R

Dl (Dl is the dimensions of LSTM hidden state

vectors), and h′′
Cτ−1

i

defaults to zeros when τ is t−z+1. Then

the predicted future state f̂Ct+1
i

of each target conventional

vehicle Ci ∈ Ctar at time step t+ 1 is computed as follows:

f̂
Ct+1

i
= φ4h

′′
Ct

i
+ b4 (13)

where φ4 ∈ R
3×Dl is the linear transformation for the final

hidden state vector h′′
Ct

i
and b4 is the bias of φ4. f̂Ct+1

i
can

be expanded out as [d̂lat(C
t+1
i , At), d̂lon(C

t+1
i , At), v̂(Ct+1

i , At)],

which refers to the predicted relative states of a target con-

ventional vehicle at time step t+1 relative to the autonomous

vehicle at time step t. We note that Equation (12) and

Equation (13) support the parallel computation of all target

conventional vehicles [53] with batched sequences.

Prediction Objective. Evidently, the prediction of f̂Ct+1
i

(∀Ci ∈ Ctar) is a regression task. In the duration of interest T,

our network needs to minimize the loss function as follows:

L1 =
1

|T|
∑

t+1∈T

∑
Ci∈Ctar

(f
Ct+1

i
− f̂

Ct+1
i

)2 (14)

where |T| denotes the length of T, and fCt+1
i

denotes the

ground truth of [dlat(C
t+1
i , At), dlon(C

t+1
i , At), v(Ct+1

i , At)]. In

particular, if Ci is a constructed phantom vehicle, we will

set the ground truth as fCt+1
i

= f̂Ct+1
i

to mask its loss.

IV. MANEUVER DECISION

Borrowing strengths from the enhanced perception module,

the future states of target conventional vehicles are fed into the

decision module as augmented states. This allows the decision

model to make predictive decisions in dynamic environments.

In this section, we first formulate our maneuver decision task

as a Parameterized Action Markov Decision Process (PAMDP)

with a discrete-continuous hybrid action space. Then we use a

deep reinforcement learning-based model and a hybrid reward

function to solve this PAMDP, which learns a policy for the

autonomous vehicle to perform optimal maneuvers.

A. Parameterized Action Markov Decision Process

According to the definition in Section II, (At.b, At.a) is the

maneuver of A at time step t, where b is one of the three lateral

lane change behaviors, i.e., b ∈ {ll, lr, lk}), and a refers to the

longitudinal acceleration. In our maneuver decision task, the

lateral lane change behavior is discrete and the longitudinal ac-

celeration is continuous. We formulate the maneuver decision

of the autonomous vehicle as a Parameterized Action Markov

Decision Process (PAMDP) [54] with a discrete-continuous

hybrid action space, denoted by M = (S+,A, T , r, γ), where

S+ is a set of augmented states, A is a parameterized action

space, T is a state transition probability distribution, r is a

reward function, and γ ∈ [0, 1) is a discount factor. Next, we

will detail the main tuples in M.

Augmented State. Instead of simply using the current states

of the autonomous vehicle A and the target conventional

vehicles Ctar = {C1, C2, . . . , C6} at time step t, we augment

the future states of Ctar at time step t+1. Such augmentation

enables the autonomous vehicle to receive possible changes

of surrounding conventional vehicles to reduce the impact

on them and avoid accidents. The current states refer to the

latest historical states of the autonomous vehicle and the

target conventional vehicles at time step t, and the future

states refer to the predicted states of the target conventional

vehicles at time step t + 1, both derived from the enhanced

perception module. Formally, the augmented state st+ at time

step t is defined as st+ = [ht, f̂ t+1]. The current states ht are

formulated as follows:

ht = [hAt , hCt
1
, hCt

2
, hCt

3
, hCt

4
, hCt

5
, hCt

6
] (15)

where hAt = [At.lat, At.lon,At.v, 0] and hCt
i

= [dlat(C
t
i , A

t),

dlon(C
t
i , A

t), v(Ct
i , A

t), IFCi
] based on Equation (7) and Equa-

tion (8). The future states f̂ t+1 are formulated as follows:

f̂ t+1 = [f̂ ′
Ct+1

1

, f̂ ′
Ct+1

2

, f̂ ′
Ct+1

3

, f̂ ′
Ct+1

4

, f̂ ′
Ct+1

5

, f̂ ′
Ct+1

6

] (16)

where f̂ ′
Ct+1

i

= [d̂lat(C
t+1
i , At), d̂lon(C

t+1
i , At), v̂(Ct+1

i , At), IFCi
]

based on Equation (13), and IFCi
is a binary code used to

indicate whether Ci is a phantom vehicle or not (Ci ∈ Ctar).

Action. The maneuver of the autonomous vehicle follows the

discrete-continuous hybrid action space, namely the parame-

terized action space [54], [55]. We define the action act at

time step t as follows:

act = (At.b, At.a) (17)

where b ∈ {ll, lr, lk} is a discrete lateral lane change behavior

and a ∈ [−a′, a′] is a continuous longitudinal acceleration

that ranges from −a′ to a′. The formulation indicates that

each discrete At.b has a corresponding continuous action-

parameter At.a, which expresses our maneuver through the

parameterized action space.

State Transition. After the autonomous vehicle plays an

action act at an augmented state st+, we first update the current

state hAt+1 of A at time step t+ 1 as follows:

hAt+1 = [At+1.lat, At+1.lon,At+1.v, 0] =

[At.lat+At.b, At.lon+At.vΔt+ 0.5At.a(Δt)2, At.v +At.aΔt, 0]
(18)

3261

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

where At.b equals to −1 (At.b = ll), +1 (At.b = lr) or

0 (At.b = lk), and Δt is the time interval between two

consecutive time steps. Then the current state hCt+1
i

of each

Ci ∈ Ctar at time step t + 1 can be obtained via the sensor

detection of the enhanced perception module. Accordingly, the

future state f̂ ′
Ct+2

i

of each Ci ∈ Ctar at time step t + 2 can

be predicted by executing LST-GAT model in the enhanced

perception module. At last, st+ is updated to st+1
+ . We note

that once the autonomous vehicle reaches the destination of the

road or causes a collision (e.g., a vehicle crash or hitting a road

boundary), the augmented state will change to the terminal

state sT by default. In the scenario of autonomous driving,

the state transition probability distribution T (st+1
+ |st+, act) is

non-deterministic due to the dynamic environment. Thus, we

exploit a model-free reinforcement learning [56] algorithm.

Reward. Once the autonomous vehicle plays an action act at

an augmented state st+, it will receive a reward as feedback,

i.e., rt. We construct a hybrid reward function to determine

rt, by considering four aspects: 1) safety, 2) efficiency, 3)

comfort, and 4) impact, which are detailed in Section IV-C.

Based on the above PAMDP, we are required to find a policy

π that tells the autonomous vehicle which is the best action

to choose in each augmented state.

B. Deep Reinforcement Learning for Maneuver Decision

There are two main approaches to learning with parame-

terized actions: 1) alternate between optimizing the discrete

actions and continuous action-parameters separately, e.g., P-

QP [57]; or 2) collapse the parameterized action space into

a continuous one, e.g., P-DDPG [58]. Both of them fail to

fully exploit the structure present in parameterized action prob-

lems [55]. The former does not share information between the

action and action-parameter policies, while the latter does not

take into account which action-parameter is associated with

which action. Recently, Parameterized Deep Q-Network (P-

DQN) [54], [55] is proposed to directly learn the policy in the

parameterized action space, which is a state-of-the-art method

for solving PAMDP. However, this method shares the network

structure for different inputs, which can lead to erroneous

interactions between inputs with different scales, a.k.a. wrong

weight sharing. Based on the optimization paradigm of P-

DQN [54], we improve the structure and propose a novel

network, called BP-DQN (Branched Parameterized Deep Q-

Network), which handles different inputs separately. Next, we

introduce the optimization paradigm based on P-DQN and

detail the network structure of BP-DQN.

Optimization. The goal of our deep reinforcement learning

is to learn a policy π with maximal expected γ-discounted

cumulative reward, i.e., action-value function [59], as follows:

Q∗(st+, act) = max
π

E

⎡
⎣∑
t′≥t

γt′−tr(st
′
+, act

′
)|π

⎤
⎦ (19)

where γ ∈ [0, 1) is a discount factor. The optimal policy is

obtained by solving the optimal action-value function Q∗. We

adopt P-DQN [54] as the reinforcement learning paradigm

�� ������	
�����			�

�)��#��* �)��#��* �����!��2
�
����
�

�

�

��

	�

�3

������	��$��	#���	"��4 ������	��$��	#���	����

Fig. 6. Network Structure of BP-DQN

to solve our PAMDP, which defines the Bellman equation to

estimate Q∗ as follows:

Q(st+, act) := Q(st+, At.b, At.a) = E
st+1
+

[
r(st+, act)+

γ max
b∈{ll,lr,lk}

sup
a∈[−a′,a′]

Q(st+1
+ , At+1.b, At+1.a)

∣∣∣st+, At.b, At.a
] (20)

To avoid the intractable calculation of sup, it states that when

Q is fixed, we can view arg supa∈[−a′,a′] Q(st+1
+ , At+1.b, At+1.a)

as a function x(st+1
+ , At+1.b). Then we can rewrite the above

Bellman equation as follows:

Q(st+, act) := Q(st+, At.b, At.a) = E
st+1
+

[
r(st+, act)+

γ max
b∈{ll,lr,lk}

Q(st+1
+ , At+1.b, x(st+1

+ , At+1.b))
∣∣∣st+, At.b, At.a

] (21)

Then we can use a deep neural network Q(st+, A
t.b, At.a; θQ)

to approximate Q(st+, A
t.b, At), where θQ is the learnable

weights. Moreover, we approximate x(st+, A
t.b) using a deter-

ministic policy network x(st+, A
t.b; θx), where θx is the learn-

able weights [56]. Accordingly, it is easy to apply the standard

DQN [59] approach of minimizing the mean-squared Bellman

error to update Q network using mini-batches sampled from

the replay buffer B, as follows:

L2 = E
(st+,At.b,At,r(st+,act),st+1

+)∼B
[1
2
(y −Q(st+, At.b, At.a; θQ))2

]

y = r(st+, act)+γ max
b∈{ll,lr,lk}

Q(st+1
+ , At+1.b, x(st+1

+ , At+1.b; θx); θQ)

(22)

The loss of x network is given by the negative sum [56] of Q
values with fixed θQ, as follows:

L3 = Est+∼B
[
−

∑
b∈{ll,lr,lk}

Q(st+, At.b, x(st+, At.b; θx); θQ)
]

(23)

Following L2, L3 and the standard training process used in

P-DQN [54], we acquire the optimal action-value function Q∗.

Then the optimal policy is able to select the best action with

argmaxact∈A Q∗(st+, ac
t) at time step t.

Network Structure. The basic structure of P-DQN [54] con-

sists of two networks, each of which is a single-branch com-

putation for some inputs. In contrast to P-DQN, the structure

of our BP-DQN consists of two networks (x and Q), each

with multiple computational branches to compute different

inputs separately, as shown in Figure 6. Using BP-DQN can

effectively avoid erroneous weight sharing between inputs of

different scales and improve the performance of P-DQN. Next,

we introduce x network and Q network of BP-DQN.

The input of x network is the augmented state st+ =

[ht, f̂ t+1], and the output consists of three longitudinal accel-

erations corresponding to three lateral lane change behaviors,

3262

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

i.e., xt
out = [At.a|At.b=ll, A

t.a|At.b=lr, A
t.a|At.b=lk]. We first

process ht and f̂ t+1 respectively in two branches, then merge

their intermediate results and calculate xt
out. For ht ∈ R

4×7

and f̂ t+1 ∈ R
4×6, we calculate their intermediate vectors, as

follows:

hht = ReLU(φ6ReLU(φ5h
t + b5) + b6)

ff̂t+1 = ReLU(φ8ReLU(φ7f̂
t+1 + b7) + b8)

(24)

where φ5 ∈ R
Dφ5

×4, φ6 ∈ R
Dφ5 , φ7 ∈ R

Dφ7
×4, and φ8 ∈

R
Dφ7 are the linear transformations, and b5, b6, b7, b8 are their

biases. Then we calculate xt
out as follows:

xt
out = a′ ∗ Tanh(φ9[hht ‖ ff̂t+1] + b9) (25)

where a′ is the is the boundary of acceleration, φ9 ∈ R
3×13

and b9 is the bias. Thus, three longitudinal accelerations inside

xt
out will be limited from −a′ to a′, following the action range

of PAMDP.

The inputs of Q network consists of the augmented state

st+ = [ht, f̂ t+1] and the output xt
out from x network. The

outputs of Q network are three Q values corresponding to

three longitudinal accelerations inside xt
out, i.e., Qt

out =
[Q|xt

out1
, Q|xt

out2
, Q|xt

out3
]. Similar to x network, We first

process ht, f̂ t+1, and xt
out respectively in three branches,

then merge their intermediate results and calculate Qt
out. For

ht ∈ R
4×7, f̂ t+1 ∈ R

4×6, and xt
out ∈ R

3, we calculate their

intermediate vectors as follows:

h′
ht = ReLU(φ11ReLU(φ10h

t + b10) + b11)

f ′
f̂t+1 = ReLU(φ13ReLU(φ12f̂

t+1 + b12) + b13)

x′
xt
out

= ReLU(φ15ReLU(φ14x
t
out + b14) + b15)

(26)

where φ10 ∈ R
Dφ10

×4, φ11 ∈ R
Dφ10 , φ12 ∈ R

Dφ12
×4, φ13 ∈

R
Dφ12 , φ14 ∈ R

Dφ14
×3, and φ15 ∈ R

3×Dφ14 are the linear

transformations, and b10, b11, b12, b13, b14, and b15 are their

biases. Then we calculate Qt
out as follows:

Qt
out = φ16[h

′
ht ‖ f ′

f̂t+1 ‖ x′
xt
out

] + b16 (27)

where φ16 ∈ R
3×16 and b16 is the bias. Qt

out indicates three

expected γ-discounted cumulative rewards w.r.t. three longitu-

dinal accelerations inside xt
out. Thus, the policy selects the best

action with argmaxxt
outi

∈{xt
out1

,xt
out2

,xt
out3

} Qt
out, where xt

out1
=

At.a|At.b=ll, xt
out2

= At.a|At.b=lr, and xt
out3

= At.a|At.b=lk.

C. Hybrid Reward Function

The hybrid reward function serves as an exploration signal

to teach the autonomous vehicle to learn the optimal policy.

In this work, a good action of the autonomous vehicle should

be safe, efficient, comfortable, and with minimal negative im-

pacts on its surrounding conventional vehicles. Therefore, we

construct a hybrid reward function considering four aspects:

1) safety, 2) efficiency, 3) comfort, and 4) impact, as follows:

rt = w1r
t
1 + w2r

t
2 + w3r

t
3 + w4r

t
4 (28)

where w1, w2, w3, and w4 are four tunable coefficients

to adjust the importance of safety, efficiency, comfort, and

impact, respectively. Next, we define the reward values for

safety (rt1), efficiency (rt1), comfort (rt3), and impact (rt4).

Safety. Time to collision (TTC), as a widely used safety

indicator, represents the time span left before a collision if

two vehicles maintain their current velocities [60]. Following

the standard definition [11], we mainly consider TTC of

the autonomous vehicle with its front conventional vehicle,

after the autonomous vehicle plays an action, i.e., TTCt+1 =
dlat(C

t+1
2 ,At+1)

−v(Ct+1
2 ,At+1)

, where v(Ct+1
2 , At+1) < 0 (otherwise TTCt+1

is invalid). Further, if the autonomous vehicle causes a colli-

sion, we will use a low reward to reflect its lack of safety. Thus,

the safety reward value rt1 ∈ [−3, 0] is defined as follows:

rt1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 3 collision

max
(
− 3, log

(TTCt+1

G
))

0 ≤ TTCt+1 < G
0 otherwise

(29)

where collision refers to a vehicle crash or hitting a road

boundary, G is a scaling threshold, and max calculation clips

log(TTCt+1

G) to [−3, 0). The autonomous vehicle usually causes

a collision when log(TTCt+1

G) ≤ −3. If C2 is a constructed

phantom vehicle, we mask its TTC and only consider whether

the autonomous vehicle causes a collision.

Efficiency. The longitudinal velocity of the autonomous ve-

hicle directly reflects its driving efficiency [14]. Thus, the

efficiency reward value rt2 ∈ [0, 1] is defined as rt2 =
(At+1.v − vmin)/(vmax − vmin).
Comfort. Jerk, defined as the change rate of acceleration, is

used to measure driving comfort since it has a strong influence

on the comfort of the passengers [61]. The larger Jerk is, the

more uncomfortable passengers will feel [11]. Accordingly,

the comfort reward value rt3 ∈ [−1, 0] is defined as rt3 =
−|At.a−At−1.a|/2a′.
Impact. The deceleration or lane change behavior of the

autonomous vehicle could affect its surrounding conventional

vehicles, reducing their driving efficiency and comfort, espe-

cially for some inappropriate behaviors, e.g., hard braking and

forced lane change [14]. In order to reduce the impact of

the autonomous vehicle, we design an impact reward value

to measure the degree that the autonomous vehicle forces the

surrounding conventional vehicles to decelerate. According to

the analysis of existing studies [14], [15], whether a vehicle

decelerates or changes lanes, it only affects the vehicle behind

it after performing the action. Therefore, after the autonomous

vehicle plays an action, we record the deceleration of its rear

conventional vehicle to measure the impact of the autonomous

vehicle. Specifically, the impact reward value rt4 ∈ [−1, 0] is

defined as follows:

rt4 =

⎧⎨
⎩

Ct+1
5 .v − Ct

5.v

2a′ ∗Δt
Ct

5.v − Ct+1
5 .v > vthr

0 otherwise

(30)

where vthr is a threshold of velocity used to measure whether

the autonomous vehicle affects the rear conventional vehicle

C5, and 2a′ ∗Δt refers to the largest velocity change between

two consecutive time steps. The impact reward value only

works when C5 decelerates greater than vthr at time step t+1.

If C5 is a constructed phantom vehicle, we will set rt4 as 0 to

mask its impact.

3263

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

V. EXPERIMENTS

A. Experimental Settings

Datasets. As it requires interaction between the autonomous

and conventional vehicles, most of the experiments are con-

ducted in a simulated environment, called SUMO (Simula-

tion of Urban MObility)2. SUMO is an open-source, highly

portable, and microscopic simulator that operates at each ve-

hicle level and allows users to import road networks and define

corresponding requests [62]. The interaction between SUMO

and our framework HEAD is established by using TraCI

(Traffic Control Interface)3, which allows to retrieve values

of simulated objects and to manipulate their behaviors on-

line. In SUMO, we simulate a straight six-lane road of length

3km, where the width of each lane widl is 3.2m. There are

many SUMO-controlled conventional vehicles and one HEAD-

controlled autonomous vehicle traveling on the road. The den-

sity of the road is set as 180 vehicles per kilometer, which is

appropriate for autonomous driving studies. The autonomous

vehicle is initialized at the road origin on a random lane. We

set the traffic restrictions as vmin = 5km/h ≈ 1.39m/s,

vmax = 90km/h = 25m/s, and a′ = 3m/s2, following the

settings in the previous works [11], [14], [63]. We denote an

episode as the autonomous vehicle driving from the origin

to the destination of the road, or driving from the origin

to the location of a collision. We prepare 4, 000 episodes

for training, and 500 episodes for testing. Each episode is

initialized randomly to guarantee the variance.

Furthermore, we evaluate our LST-GAT model on a dataset

constructed by merging two real-world datasets: NGSIM US-

101 [64] and I-80 [65]. The merged dataset, called REAL,

consists of trajectories of conventional vehicles traveling on a

1.14km-length highway segment with six straight lanes, which

is produced by the standard preprocessing used in the previous

work [14]. We further split REAL into training and test sets

with a splitting ratio of 4 : 1. Since the distributions of SUMO

and REAL are similar, we can train our LST-GAT model on

REAL and use it to fulfill the state prediction in SUMO.

Implementation Details. We implement the enhanced percep-

tion and maneuver decision modules in HEAD as follows:

(1) Enhanced perception module. For the phantom vehicle

construction, the sensor detection range (or radius) R of

the autonomous vehicle is set to 100m, and the number of

historical time steps z is set to 5, following the settings

used in the previous works [14], [27]. Although SUMO

provides global states for all conventional vehicles, we use

the geometry [66] to simulate the sensor limitations in the

real scenario of autonomous driving. For the network structure

of LST-GAT model, we set the corresponding dimensions as:

Dφ1
= 64, Dφ3

= 64, and Dl = 64. In addition, we train

LST-GAT model by using Adam optimizer [67] for 15 epochs

with a learning rate of 0.001 and a batch size of 64 by default.

(2) Maneuver decision module. For the network structure of

BP-DQN, we set the corresponding dimensions as: Dφ5
= 64,

2https://www.eclipse.org/sumo/
3https://sumo.dlr.de/docs/TraCI.html

Dφ7
= 64, Dφ10

= 64, Dφ12
= 64, Dφ14

= 64. For the

hybrid reward function, the scaling threshold G is set as 4,

and the threshold of velocity vthr is set to 0.5m/s, following

the settings used in the previous works [11], [68]. Further, we

set the tunable coefficients used in the hybrid reward function

as: w1 = 0.9, w2 = 0.8, w3 = 0.6, w4 = 0.2, which are

evaluated in Section V-E. For the optimization of BP-DQN,

the discount factor γ is set to 0.9, the size of the replay buffer

is set to 20, 000 by default. We train our BP-DQN using Adam

optimizer [67] for 4, 000 episodes with a scheduled learning

rate of 0.001 and a batch size of 64, following the settings

used in the previous works [15], [55]. Similar to DDPG [56],

we add two target networks for Q and x networks and use

the soft updates strategy with the ratio of 0.01 for training

stability. Our experimental results are reported based on the

above settings, unless expressly specified.

Baselines. We compare our HEAD with several representative

baselines for autonomous driving, including two traditional

methods, a deep reinforcement learning-based method, and a

prediction-and-search method, as follows:

(1) IDM-LC [8], [69]. Traditional intelligent driver model with

lane-changing model for decision making.

(2) ACC-LC [6]–[8]. Traditional adaptive cruise control model

with lane-changing model for decision making.

(3) DRL-SC [10]. Deep reinforcement learning model with

safety check for decision making.

(4) TP-BTS [14]. Trajectory prediction model with behavior

tree search algorithm for decision making.

Variants. To evaluate each component of our framework, we

perform ablation studies with the following variants of HEAD:

(1) HEAD-w/o-PVC. We remove the strategy of phantom

vehicle construction in the enhanced perception module, and

the historical states of unobservable conventional vehicles are

filled with zero states.

(2) HEAD-w/o-LST-GAT. We remove our LST-GAT model

in the enhanced perception module, and only use the current

observable states for maneuver decisions.

(3) HEAD-w/o-BP-DQN. We replace our BP-DQN with the

vanilla P-DQN [54] in the maneuver decision module.

(4) HEAD-w/o-IMP. We remove the impact reward value in

the maneuver decision module, and only consider the safety,

efficiency, and comfort reward values.

Other Compared Methods. For LST-GAT model in the en-

hanced perception module, we compare it against several state-

of-the-art trajectory prediction methods modified for our state

prediction task, as follows:

(1) LSTM-MLP [26]. Vanilla LSTM with multilayer percep-

tron network for state prediction.

(2) ED-LSTM [37]. Encoder-decoder LSTM network for state

prediction.

(3) GAS-LED [14]. Global attention and state sharing LSTM

encoder-decoder network for state prediction.

Furthermore, for BP-DQN in the maneuver decision mod-

ule, we compare it against three state-of-the-art reinforcement

learning-based methods for solving our PAMDP, as follows:

3264

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I
END-TO-END PERFORMANCE OF BASELINES AND HEAD IN SUMO

Method

Macroscopic Microscopic
Avg

DT-A
(s)

Avg
DT-C

(s)

Avg
#-CA

Min
TTC-A

(s)

Avg
V-A

(m/s)

Avg
J-A

(m/s2)

Avg
D-CA
(m/s)

IDM-LC 143.9 167.5 23.9 3.42 20.84 0.47 0.22

ACC-LC 142.4 167.3 25.4 3.48 21.06 0.48 0.24

DRL-SC 139.6 165.4 24.3 3.67 21.48 0.45 0.23

TP-BTS 141.2 164.2 21.5 3.31 21.24 0.44 0.21

HEAD 134.5 161.3 16.7 3.85 22.30 0.37 0.18

(1) P-QP [57]. Parameterized Q-learning with parameter up-

date algorithm for PAMDP.

(2) P-DDPG [58]. Parameterized deep deterministic policy

gradients algorithm for PAMDP.

(3) P-DQN [54]. Parameterized deep Q-network for PAMDP.

Environments. All of the experiments are run on an an Ubuntu

Server with an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz,

and NVIDIA GeForce RTX 3080 GPU.

B. End-to-End Evaluation

We study the end-to-end performance of HEAD by com-

paring it against several baselines (IDM-LC, ACC-LC, DRL-

SC, and TP-BTS). We conduct 500 test episodes in SUMO4,

and measure the effectiveness from both macroscopic and

microscopic aspects.

Macroscopic Effectiveness. We design the macroscopic met-

rics as follows:

(1) Average driving time of the autonomous vehicle (AvgDT-

A). We record the end-to-end driving time of the autonomous

vehicle traveling through the road (3km). The smaller value

of AvgDT-A indicates that the autonomous vehicle has higher

driving efficiency.

(2) Average driving time of conventional vehicles (AvgDT-C).

We record the end-to-end driving time of the conventional

vehicles within 100 meters behind the autonomous vehicle

traveling through the road (3km). The smaller value of

AvgDT-C indicates higher traffic flow efficiency.

(3) Average number of times that the autonomous vehicle

affects its rear conventional vehicle (Avg#-CA). We record

the velocity change of the conventional vehicle behind the

autonomous vehicle, if it decelerates greater than 0.5m/s from

t to t+1, our counter will record it. The smaller value of Avg#-

CA indicates that the autonomous vehicle has less impact on

traffic flow.

We report AvgDT-A, AvgDT-C, and Avg#-CA in Table I.

As shown, HEAD achieves the shortest AvgDT-A and AvgDT-

C, and has the least Avg#-CA. These results demonstrate that

HEAD not only enables the autonomous vehicle to have high

driving efficiency, but also improves traffic flow efficiency.

Microscopic Effectiveness. We design the microscopic met-

rics as follows:

(1) Minimum time to collision of the autonomous vehicle

(MinTTC-A). We record TTC of the autonomous vehicle (in

Section IV-C). The larger value of MinTTC-A indicates that

the autonomous vehicle is safer.

4All methods do not cause any collisions (or accidents) in the test episodes.

TABLE II
ABLATION STUDY OF HEAD-VARIANTS AND HEAD IN SUMO

Method

Macroscopic Microscopic
Avg

DT-A
(s)

Avg
DT-C

(s)

Avg
#-CA

Min
TTC-A

(s)

Avg
V-A

(m/s)

Avg
J-A

(m/s2)

Avg
D-CA
(m/s)

HEAD-w/o-

PVC
139.2 163.4 18.5 3.76 21.54 0.42 0.20

HEAD-w/o-

LST-GAT
140.7 164.6 19.7 3.69 21.32 0.39 0.21

HEAD-w/o-

BP-DQN
137.1 162.2 17.3 3.82 21.87 0.40 0.19

HEAD-w/o-

IMP
135.5 163.8 22.6 3.73 22.13 0.41 0.22

(2) Average velocity of the autonomous vehicle (AvgV-A).

We record the velocity of the autonomous vehicle in all

test episodes. The larger value of AvgV-A indicates that the

autonomous vehicle is faster.

(3) Average Jerk of the autonomous vehicle (AvgJ-A). We

record Jerk of the autonomous vehicle (in Section IV-C). The

smaller value of AvgJ-A indicates that the autonomous vehicle

is more comfortable.

(4) Average deceleration of the conventional vehicle behind the

autonomous vehicle (AvgD-CA). We record the deceleration

of the conventional vehicle behind the autonomous vehicle

car in all test episodes. The smaller value of AvgD-CA

indicates that the autonomous vehicle has less impact on its

rear conventional vehicles.

We report MinTTC-A, AvgV-A, AvgJ-A, and AvgD-CA in

Table I. We can see that HEAD has the longest MinTTC-A,

the highest AvgV-A, and the lowest AvgJ-A and AvgD-CA,

demonstrating that HEAD enables the autonomous vehicle to

perform safe and comfortable maneuvers with high velocity

and minimal impact on surrounding conventional vehicles.

C. Evaluation of Enhanced Perception Module

We evaluate the performance of the enhanced perception

module in HEAD by conducting an ablation study and a

break-down evaluation. The ablation study is conducted by

comparing HEAD against several HEAD-variants (HEAD-w/o-

PVC and HEAD-w/o-LST-GAT). The break-down evaluation

is conducted by comparing LST-GAT model with three state

prediction methods (LSTM-MLP, ED-LSTM, and GAS-LED).

Ablation Study. For HEAD-w/o-PVC and HEAD-w/o-LST-

GAT, we measure their effectiveness as in Section V-B. We re-

port their AvgDT-A, AvgDT-C, Avg#-CA, MinTTC-A, AvgV-

A, AvgJ-A, and AvgD-CA in Table II. From the macroscopic

aspects, HEAD achieves the shortest AvgDT-A and AvgDT-C,

and has the least Avg#-CA, which proves that LST-GAT model

with the strategy of phantom vehicle construction is benefit for

both perception and decision of autonomous driving. From

the microscopic aspects, we can see that HEAD achieves the

longest MinTTC-A, the highest AvgV-A, and the lowest AvgJ-

A and AvgD-CA, demonstrating that LST-GAT model with the

strategy of phantom vehicle construction is useful for making

safe, efficient, and comfortable decisions with minimal impact.

Break-down Evaluation. We take a break-down evaluation

of our LST-GAT model by comparing it with LSTM-MLP,

3265

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

TABLE III
ACCURACY OF COMPARED METHODS AND LST-GAT ON REAL

Metric LSTM-MLP ED-LSTM GAS-LED LST-GAT
MAE 0.62 0.47 0.35 0.27
MSE 0.13 0.08 0.05 0.03

RMSE 0.35 0.28 0.22 0.17

TABLE IV
EFFICIENCY OF COMPARED METHODS AND LST-GAT ON REAL

Metric LSTM-MLP ED-LSTM GAS-LED LST-GAT
TCT (h) 0.87 0.94 1.06 0.83

AvgIT (ms) 8.58 9.43 10.51 3.76

ED-LSTM, and GAS-LED from both accuracy and efficiency

aspects on REAL. For the accuracy, we report their Mean

absolute error (MAE), Mean squared error (MSE), and Root

mean squared error (RMSE) for our one-step state prediction

in Table III. For the efficiency, we report their Training

convergence time (TCT) and Average inference time (AvgIT)

in Table IV. As depicted, our proposed LST-GAT model

outperforms all the other models, since it has lower MAE,

MSE, and RMSE, and has shorter TCT and AvgIT.

D. Evaluation of Maneuver Decision Module

We evaluate the performance of the maneuver decision

module in HEAD by conducting an ablation study and a

break-down evaluation. The ablation study is conducted by

comparing HEAD against several HEAD-variants (HEAD-w/o-

BP-DQN and HEAD-w/o-IMP). The break-down evaluation is

conducted by comparing our BP-DQN with three reinforce-

ment learning-based methods (P-QP, P-DDPG, and P-DQN).

Ablation Study. For HEAD-w/o-BP-DQN and HEAD-w/o-

IMP, we measure their effectiveness as in Section V-B. We re-

port their AvgDT-A, AvgDT-C, Avg#-CA, MinTTC-A, AvgV-

A, AvgJ-A, and AvgD-CA in Table II. From the macroscopic

aspects, HEAD achieves the shortest AvgDT-A and AvgDT-C,

and has the least Avg#-CA, which clearly proves that BP-

DQN and the hybrid reward function is benefit for making

appropriate decisions without affecting traffic flow efficiency.

From the microscopic aspects, we can see that HEAD has the

longest MinTTC-A, the highest AvgV-A, and the lowest AvgJ-

A and AvgD-CA, proving that BP-DQN and the impact reward

value not only improve the safety, efficiency, and comfort of

the autonomous vehicle but also reduce the impact.

Break-down Evaluation. We take a break-down evaluation

of our BP-DQN by comparing it with P-QP, P-DDPG, and

P-DQN from both effectiveness and efficiency aspects in

SUMO. For the effectiveness, we report their Minimum re-

ward (MinR), Maximum reward (MaxR), and Average reward

(AvgR) in Table V. For the efficiency, we report their Training

convergence time (TCT) and Average inference time (AvgIT)

in Table VI. As shown, our BP-DQN outperforms all the other

reinforcement learning-based methods, since it has higher

MinR, MaxR, and AvgR, and has shorter TCT and AvgIT.

E. Reward Shaping

For the hybrid reward function in the maneuver decision

module, w1, w2, w3, and w4 correspond to the coefficients

TABLE V
EFFECTIVENESS OF COMPARED METHODS AND BP-DQN IN SUMO

Metric P-QP P-DDPG P-DQN BP-DQN
MinR -2.06 -1.73 -1.26 -1.14
MaxR 0.35 0.47 0.56 0.59
AvgR 0.17 0.29 0.36 0.43

TABLE VI
EFFICIENCY OF COMPARED METHODS AND BP-DQN IN SUMO

Metric P-QP P-DDPG P-DQN BP-DQN
TCT (h) 1.83 1.85 1.77 1.74

AvgIT (ms) 3.59 3.64 3.57 3.48

TABLE VII
EFFECT OF COEFFICIENTS IN HYBRID REWARD FUNCTION

Coefficient Min Max Step Best
w1 0.5 1 0.1 0.9
w2 0 1 0.2 0.8
w3 0 1 0.2 0.6
w4 0 0.5 0.1 0.2

of rt1 (safety), rt2 (efficiency), rt3 (comfort), and rt4 (impact),

respectively. To achieve better performance, we adopt the grid

search [70] to determine them, which is shown in Table VII.

VI. RELATED WORK

Decision-making for autonomous vehicles focuses on how

to use the data provided by their sensors to make maneuver

decisions [5], [9]. Traditional decision-making methods, e.g.,

Krauss [71], IDM [69], ACC [6], [7], and LC [8], design a

set of rule-matching algorithms to perform velocity change

and lane change behaviors, which require expert experience

and manual tuning, leading to poor generalizability. After-

ward, the autonomous driving community attempts to utilize

reinforcement learning-based methods to make maneuver deci-

sions [9], [72]. Existing reinforcement learning-based models,

e.g., DRL-SC [10], AD-DDPG [11], MCTS-DRL [12], and

EA-DQN [13], mainly optimize the driving safety, efficiency,

and comfort of autonomous vehicles, leaving the impact on

other surrounding vehicles. Recently, several prediction-and-

decision frameworks [14], [73], [74] are proposed to first

proactively perceive possible changes of surrounding vehicles’

states and then make maneuver decisions more wisely. How-

ever, they cannot quantify the impact of the autonomous vehi-

cle on surrounding vehicles, and ignore the sensor limitations

in their prediction phases, leading to poor applicability.

VII. CONCLUSION

In this work, we propose a perception-and-decision frame-

work, called HEAD, to enable the autonomous vehicle to

perform safe, efficient, and comfortable maneuvers with mini-

mal impact on surrounding vehicles. Experiments confirm the

superiority of HEAD over state-of-the-art approaches.

ACKNOWLEDGMENT

This work is partially supported by NSFC (No. 61972069,

61836007, 61832017, 62272086), Shenzhen Municipal Sci-

ence and Technology R&D Funding Basic Research Program

(JCYJ20210324133607021), and Municipal Government of

Quzhou under Grant (No. 2021D022, 2022D037).

3266

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Schrank, L. Albert, B. Eisele, and T. Lomax, “2021 urban mobility
report,” Texas A&M Transportation Institute, Tech. Rep., 2021.

[2] M. Won, T. Park, and S. H. Son, “Toward mitigating phantom jam using
vehicle-to-vehicle communication,” IEEE transactions on intelligent
transportation systems, vol. 18, no. 5, pp. 1313–1324, 2016.

[3] Z. Wang, M. Lu, X. Yuan, J. Zhang, and H. Van De Wetering, “Visual
traffic jam analysis based on trajectory data,” IEEE transactions on
visualization and computer graphics, vol. 19, no. 12, pp. 2159–2168,
2013.

[4] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama,
K. Nishinari, S.-i. Tadaki, and S. Yukawa, “Traffic jams without bot-
tlenecks—experimental evidence for the physical mechanism of the
formation of a jam,” New journal of physics, vol. 10, no. 3, p. 033001,
2008.

[5] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE access, vol. 8, pp. 58 443–58 469, 2020.

[6] V. Milanés and S. E. Shladover, “Modeling cooperative and autonomous
adaptive cruise control dynamic responses using experimental data,”
Transportation Research Part C: Emerging Technologies, vol. 48, pp.
285–300, 2014.

[7] L. Xiao, M. Wang, and B. Van Arem, “Realistic car-following models
for microscopic simulation of adaptive and cooperative adaptive cruise
control vehicles,” Transportation Research Record, vol. 2623, no. 1, pp.
1–9, 2017.

[8] J. Erdmann, “Sumo’s lane-changing model,” in Modeling Mobility with
Open Data. Springer, 2015, pp. 105–123.

[9] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[10] S. Nageshrao, H. E. Tseng, and D. Filev, “Autonomous highway
driving using deep reinforcement learning,” in 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019, pp.
2326–2331.

[11] M. Zhu, Y. Wang, Z. Pu, J. Hu, X. Wang, and R. Ke, “Safe, efficient,
and comfortable velocity control based on reinforcement learning for
autonomous driving,” Transportation Research Part C: Emerging Tech-
nologies, vol. 117, p. 102662, 2020.

[12] C.-J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J. Kochen-
derfer, “Combining planning and deep reinforcement learning in tactical
decision making for autonomous driving,” IEEE transactions on intelli-
gent vehicles, vol. 5, no. 2, pp. 294–305, 2019.

[13] E. Leurent and J. Mercat, “Social attention for autonomous decision-
making in dense traffic,” arXiv preprint arXiv:1911.12250, 2019.

[14] S. Liu, H. Su, Y. Zhao, K. Zeng, and K. Zheng, “Lane change scheduling
for autonomous vehicle: A prediction-and-search framework,” in Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, 2021, pp. 3343–3353.

[15] Z. Xu, S. Liu, Z. Wu, X. Chen, K. Zeng, K. Zheng, and H. Su, “Patrol: A
velocity control framework for autonomous vehicle via spatial-temporal
reinforcement learning,” in Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, 2021, pp. 2271–
2280.

[16] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A. Mouza-
kitis, “Deep learning-based vehicle behavior prediction for autonomous
driving applications: A review,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 23, no. 1, pp. 33–47, 2020.

[17] N. Kehtarnavaz, N. Groswold, K. Miller, and P. Lascoe, “A transportable
neural-network approach to autonomous vehicle following,” IEEE Trans-
actions on Vehicular Technology, vol. 47, no. 2, pp. 694–702, 1998.

[18] J. Jiang and A. Astolfi, “Lateral control of an autonomous vehicle,”
IEEE Transactions on Intelligent Vehicles, vol. 3, no. 2, pp. 228–237,
2018.

[19] J. Li, B. Dai, X. Li, X. Xu, and D. Liu, “A dynamic bayesian network for
vehicle maneuver prediction in highway driving scenarios: Framework
and verification,” Electronics, vol. 8, no. 1, p. 40, 2019.

[20] W. Shi, M. B. Alawieh, X. Li, and H. Yu, “Algorithm and hardware
implementation for visual perception system in autonomous vehicle: A
survey,” Integration, vol. 59, pp. 148–156, 2017.

[21] J. Yoo and R. Langari, “A predictive perception model and control
strategy for collision-free autonomous driving,” IEEE transactions on
intelligent transportation systems, vol. 20, no. 11, pp. 4078–4091, 2018.

[22] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic
review of perception system and simulators for autonomous vehicles
research,” Sensors, vol. 19, no. 3, p. 648, 2019.

[23] W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha, “A real-time motion
planner with trajectory optimization for autonomous vehicles,” in 2012
IEEE International Conference on Robotics and Automation. IEEE,
2012, pp. 2061–2067.

[24] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and
Applications, vol. 5, pp. 64–67, 2001.

[25] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of sur-
rounding vehicles with maneuver based lstms,” in 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2018, pp. 1179–1184.

[26] F. Altché and A. de La Fortelle, “An lstm network for highway trajectory
prediction,” in 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2017, pp. 353–359.

[27] N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle
trajectory prediction,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, 2018, pp. 1468–1476.

[28] K. Messaoud, I. Yahiaoui, A. Verroust-Blondet, and F. Nashashibi,
“Non-local social pooling for vehicle trajectory prediction,” in 2019
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 975–980.

[29] R. Roriz, J. Cabral, and T. Gomes, “Automotive lidar technology:
A survey,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 7, pp. 6282–6297, 2022.

[30] S. Royo and M. Ballesta-Garcia, “An overview of lidar imaging systems
for autonomous vehicles,” Applied sciences, vol. 9, no. 19, p. 4093, 2019.

[31] B. Fu, Y. Wang, X. Ding, Y. Jiao, L. Tang, and R. Xiong, “Lidar-camera
calibration under arbitrary configurations: Observability and methods,”
IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 6,
pp. 3089–3102, 2019.

[32] Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: The
principles, challenges, and trends for automotive lidar and perception
systems,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 50–61,
2020.

[33] F. Baselice, G. Ferraioli, G. Matuozzo, V. Pascazio, and G. Schirinzi,
“3d automotive imaging radar for transportation systems monitoring,”
in 2014 IEEE Workshop on Environmental, Energy, and Structural
Monitoring Systems Proceedings. IEEE, 2014, pp. 1–5.

[34] Y. Shen and W. Q. Yan, “Blind spot monitoring using deep learning,”
in 2018 International Conference on Image and Vision Computing New
Zealand (IVCNZ). IEEE, 2018, pp. 1–5.

[35] J. Liu, X. Mao, Y. Fang, D. Zhu, and M. Q.-H. Meng, “A survey on
deep-learning approaches for vehicle trajectory prediction in autonomous
driving,” in 2021 IEEE International Conference on Robotics and
Biomimetics (ROBIO). IEEE, 2021, pp. 978–985.

[36] K. Messaoud, I. Yahiaoui, A. Verroust-Blondet, and F. Nashashibi,
“Attention based vehicle trajectory prediction,” IEEE Transactions on
Intelligent Vehicles, vol. 6, no. 1, pp. 175–185, 2020.

[37] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi,
“Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-
decoder architecture,” in 2018 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2018, pp. 1672–1678.

[38] K. Messaoud, N. Deo, M. M. Trivedi, and F. Nashashibi, “Trajectory
prediction for autonomous driving based on multi-head attention with
joint agent-map representation,” in 2021 IEEE Intelligent Vehicles Sym-
posium (IV). IEEE, 2021, pp. 165–170.

[39] C. Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph multi-attention
network for traffic prediction,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 34, no. 01, 2020, pp. 1234–1241.

[40] M. Qiu, P. Zhao, K. Zhang, J. Huang, X. Shi, X. Wang, and W. Chu,
“A short-term rainfall prediction model using multi-task convolutional
neural networks,” in 2017 IEEE international conference on data mining
(ICDM). IEEE, 2017, pp. 395–404.

[41] S. Liu, Z. Xu, H. Ren, T. He, B. Han, J. Bao, K. Zheng, and Y. Zheng,
“Detecting loaded trajectories for hazardous chemicals transportation,”
in 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 2022, pp. 3294–3306.

[42] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 922–929.

3267

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

[43] C. Zhang, J. James, and Y. Liu, “Spatial-temporal graph attention
networks: A deep learning approach for traffic forecasting,” IEEE
Access, vol. 7, pp. 166 246–166 256, 2019.

[44] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[46] M. Fu, T. Zhang, W. Song, Y. Yang, and M. Wang, “Trajectory
prediction-based local spatio-temporal navigation map for autonomous
driving in dynamic highway environments,” IEEE Transactions on
Intelligent Transportation Systems, 2021.

[47] C. Wissing, T. Nattermann, K.-H. Glander, and T. Bertram, “Trajectory
prediction for safety critical maneuvers in automated highway driving,”
in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2018, pp. 131–136.

[48] S. Dai, L. Li, and Z. Li, “Modeling vehicle interactions via modified
lstm models for trajectory prediction,” IEEE Access, vol. 7, pp. 38 287–
38 296, 2019.

[49] H.-T. Cheng, C.-H. Chao, J.-D. Dong, H.-K. Wen, T.-L. Liu, and M. Sun,
“Cube padding for weakly-supervised saliency prediction in 360 videos,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 1420–1429.

[50] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Hetero-
geneous graph attention network,” in The world wide web conference,
2019, pp. 2022–2032.

[51] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge
graph attention network for recommendation,” in Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data
mining, 2019, pp. 950–958.

[52] V. Kosaraju, A. Sadeghian, R. Martı́n-Martı́n, I. Reid, H. Rezatofighi,
and S. Savarese, “Social-bigat: Multimodal trajectory forecasting using
bicycle-gan and graph attention networks,” Advances in Neural Infor-
mation Processing Systems, vol. 32, 2019.

[53] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[54] J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H. Fu,
T. Zhang, J. Liu, and H. Liu, “Parametrized deep q-networks learning:
Reinforcement learning with discrete-continuous hybrid action space,”
arXiv preprint arXiv:1810.06394, 2018.

[55] C. J. Bester, S. D. James, and G. D. Konidaris, “Multi-pass q-networks
for deep reinforcement learning with parameterised action spaces,” arXiv
preprint arXiv:1905.04388, 2019.

[56] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[57] W. Masson, P. Ranchod, and G. Konidaris, “Reinforcement learning
with parameterized actions,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[58] M. Hausknecht and P. Stone, “Deep reinforcement learning in parame-
terized action space,” arXiv preprint arXiv:1511.04143, 2015.

[59] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[60] L. Evans, Traffic safety and the driver. Science Serving Society, 1991.

[61] I. Jacobson, L. Richards, and A. Kuhlthau, “Models of human comfort
in vehicle environments,” Human Factors in Transport Research Edited
by DJ Oborne, JA Levis, vol. 2, 1980.

[62] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using sumo,” in 2018 21st international
conference on intelligent transportation systems (ITSC). IEEE, 2018,
pp. 2575–2582.

[63] K. Nagel, D. E. Wolf, P. Wagner, and P. Simon, “Two-lane traffic
rules for cellular automata: A systematic approach,” Physical Review
E, vol. 58, no. 2, p. 1425, 1998.

[64] J. Colyar and J. Halkias, “Next generation simulation ngsim us highway
101 dataset,” Federal Highway Administration, Tech. Rep., 2007.

[65] J. Halkias and J. Colyar, “Next generation simulation ngsim interstate
80 freeway dataset,” Federal Highway Administration, Tech. Rep., 2006.

[66] J. Yan, H. Jiao, W. Pu, C. Shi, J. Dai, and H. Liu, “Radar sensor network
resource allocation for fused target tracking: a brief review,” Information
Fusion, 2022.

[67] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[68] X. Qu, Y. Yu, M. Zhou, C.-T. Lin, and X. Wang, “Jointly dampening
traffic oscillations and improving energy consumption with electric,
connected and automated vehicles: a reinforcement learning based
approach,” Applied Energy, vol. 257, p. 114030, 2020.

[69] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review E,
vol. 62, no. 2, p. 1805, 2000.

[70] I. Syarif, A. Prugel-Bennett, and G. Wills, “Svm parameter optimization
using grid search and genetic algorithm to improve classification per-
formance,” TELKOMNIKA (Telecommunication Computing Electronics
and Control), vol. 14, no. 4, pp. 1502–1509, 2016.

[71] S. Krauß, P. Wagner, and C. Gawron, “Metastable states in a microscopic
model of traffic flow,” Physical Review E, vol. 55, no. 5, p. 5597, 1997.

[72] S. Aradi, “Survey of deep reinforcement learning for motion planning of
autonomous vehicles,” IEEE Transactions on Intelligent Transportation
Systems, 2020.

[73] C. Hubmann, M. Becker, D. Althoff, D. Lenz, and C. Stiller, “Decision
making for autonomous driving considering interaction and uncertain
prediction of surrounding vehicles,” in 2017 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2017, pp. 1671–1678.

[74] S. Noh, “Decision-making framework for autonomous driving at road
intersections: Safeguarding against collision, overly conservative behav-
ior, and violation vehicles,” IEEE Transactions on Industrial Electronics,
vol. 66, no. 4, pp. 3275–3286, 2018.

3268

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 26,2024 at 02:00:20 UTC from IEEE Xplore. Restrictions apply.

