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Abstract—With the widespread diffusion of smartphones,
Spatial Crowdsourcing (SC), which aims to assign spatial tasks to
mobile workers, has drawn increasing attention in both academia
and industry. One of the major issues is how to best assign
tasks to workers. Given a worker and a task, the worker will
choose to accept the task based on her affinity towards the
task, and the worker can propagate the information of the
task to attract more workers to perform it. These factors can
be measured as worker-task influence. Since workers’ affinities
towards tasks are different and task issuers may ask workers
who performed tasks to propagate the information of tasks to
attract more workers to perform them, it is important to analyze
worker-task influence when making assignments. We propose and
solve a novel influence-aware task assignment problem in SC,
where tasks are assigned to workers in a manner that achieves
high worker-task influence. In particular, we aim to maximize
the number of assigned tasks and worker-task influence. To
solve the problem, we first determine workers’ affinities towards
tasks by identifying workers’ historical task-performing patterns.
Next, a Historical Acceptance approach is developed to measure
workers’ willingness of performing a task, i.e., the probability of
workers visiting the location of the task when they are informed.
Next, we propose a Random reverse reachable-based Propagation
Optimization algorithm that exploits reverse reachable sets to
calculate the probability of workers being informed about tasks
in a social network. Based on worker-task influence derived
from the above three factors, we propose three influence-aware
task assignment algorithms that aim to maximize the number of
assigned tasks and worker-task influence. Extensive experiments
on two real-world datasets offer detailed insight into the
effectiveness of our solutions.

Index Terms—worker-task influence, task assignment, spatial
crowdsourcing

I. INTRODUCTION

With the near-ubiquitous diffusion of smartphones and

similar devices, a new kind of crowdsourcing has emerged,

namely Spatial Crowdsourcing (SC), where smartphone users

serve as workers that perform tasks at specific physical

locations. In SC, examples of spatial tasks include reporting

local hot spots, taking photos or videos of a POI, and

monitoring traffic conditions [1].

SC has received substantial attention in the last

years [2]–[10]. Studies exist that aim to maximize the

total number of completed tasks [11], the diversity score of

*Corresponding author: Kai Zheng.

assignments [12], the number of completed tasks for a worker

with an optimal schedule [13], etc. These studies generally

focus on the spatio-temporal information of workers and

tasks during task assignment, while they do not consider

worker-task influence, i.e., how to ensure that assigned tasks

satisfy workers’ affinities towards tasks and are well-known

among workers who are likely to visit the locations of tasks.

Visiting the location of a task is equivalent to accepting

the task. In real-world scenarios, different workers prefer

different kinds of tasks. Moreover, when completing tasks,

workers can propagate information on available tasks to their

friends through social networks. Workers who are informed

can choose to perform tasks based on their historical

task-performing patterns. It is important to analyze such

phenomena when assigning tasks. For example, the owner of

a new restaurant may want to publish a leaflet distribution

task to promote the restaurant as widely as possible. Some

free meal coupons and VIP cards are offered to workers who

accept the task and help to propagate the news about the

restaurant. If we only consider spatio-temporal information,

an available worker who close to the restaurant at the current

time will be assigned the task, but the worker may not be able

to promote the restaurant widely. Thus, the case will not be a

successful promotion. In addition, the real-time locations of

workers are temporary, which ignores the worker’s historical

task-performing patters. Moreover, by analyzing the social

networks that workers are in, we can obtain valuable insights

about interactions among workers, which can be further

utilized to improve the quality of spatial task assignments.

Recent studies have explored the effects of social impact

in task assignment, where social network features are used

to extract preference of worker groups [14], [15]. However,

these studies do not consider the interactions among workers,

which include information propagation patterns and social

network structures. Different workers have different abilities to

propagate information [16] and different probabilities to visit

the locations of tasks [17]. This indicates that different workers

contribute differently to worker-task influence. Moreover, it is

important to infer task execution behaviors based on historical

task-performing records of workers. Several approaches use

past task-performing patterns to deduce worker preferences

for tasks [1], [18], but they do not analyze the willingness of
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workers to perform tasks, i.e., the probabilities that workers

will visit the task locations. If a worker previously performed

tasks near a new task, the worker is more likely to visit the

location of the new task [19]. Lastly, we are not aware of

any existing task assignment techniques that combine social

networks and historical task-performing patterns to determine

worker-task influence, which is a key factor for improving the

quality of task assignment in SC.

To address these challenges, we propose the Influence-aware

Task Assignment (ITA) problem, where the objective is

to assign tasks to suitable workers so as to maximize

both the total number of assigned tasks and worker-task

influence, which consists of workers’ affinities (namely

worker-task affinity) towards tasks, the probability (namely

worker willingness) of workers visiting the locations of

tasks and the probability (namely worker propagation) of

workers being informed about tasks in social networks. Larger

worker-task influence means that workers’ affinities towards

tasks are larger, and the number of people who are willing to

visit the locations of tasks after informed is larger. An example

of the ITA problem is illustrated in Figure 1. Workers, w1, w2,

and w3 performed tasks, s1, s2, and s3, at time t1, respectively.

At time t2, workers w4 and w5 are online, and tasks s4
and s5 become available. These are tasks published by new

restaurants that ask workers to take photos and then advertise

the restaurants on social media. The requirement of tasks is

to increase the number of people who are willing to visit the

location of the restaurant after knowing about it, i.e., enlarging

worker-task influence. The circle around each worker denotes

the reachable region of the worker at the current time. Because

of the budgets of the restaurant, only one worker is required

to perform each task, while the worker who are assigned the

task should enlarge worker-task influence. A simple greedy

approach is to assign tasks to the nearest worker, which

gives the task assignment {(s4, w3), (s5, w5)}, where the value

of worker-task influence is 1.67 + 0.85 = 2.52. However,

adopting an influence-aware task assignment approach, we

can achieve a higher worker-task influence with assignment

{(s4, w4), (s5, w5)}, where the value of worker-task influence

is 4.25 + 0.85 = 5.1.

Worker-task influence can be computed by worker-task

affinity (i.e., workers’ affinities towards tasks), worker

willingness (i.e., the probability of workers visiting the

locations of tasks) and worker propagation (i.e, the probability

of workers being informed about tasks in social networks.).

However, there exists a challenge of how to combine

worker-task influence with existing objectives such as

maximizing the number of assigned tasks. In other words,

influence-aware assignment should optimize for worker-task

influence without sacrificing other objectives. To achieve this,

we propose a Data-driven Influence-aware Task Assignment

(DITA) framework, consisting of two primary components.

First, worker-task influence is calculated, which not only

considers online interactions among workers, but also captures

workers’ historical task-performing patterns and real-time

task assignments mode. Second, we design three algorithms

Historical task-performing records

Distribution of tasks and 
workers at time 

Task assignment at time 

Influence-aware task assignmentGreedy task assignment

1 2 3 4

1

2

3

4

Worker Time Task

Worker-task influence at 

1.42 3.56 1.67 4.25 5.23
2.28 6.17 0.32 0.18 0.85

Worker Time Task

Worker Time Task

Fig. 1. Running Example

to maximize the overall task assignments by giving higher

priorities to workers who generate higher worker-task

influence at every time instance.

The paper’s contributions can be summarized as follows:

i) We formalize and study an Influence-aware Task

Assignment (ITA) problem in the context of SC. To the best

of our knowledge, this is the first study in SC that considers

worker-task influence and assigns tasks based on the influence.

ii) We calculate worker-task influence by taking into

account worker-task affinity, worker willingness and worker

propagation.

iii) We design three alternative algorithms to solve

the ITA problem, including basic Influence-aware

Assignment, Entropy-based Influence-aware Assignment,

and Distance-based Influence-aware Assignment.

iv) We conduct extensive experiments on two real-world

datasets to offer insight into the effectiveness of the proposed

methods.

II. PROBLEM STATEMENT

We present necessary preliminaries, define the problem

addressed, and give an overview of our solution framework.

Table I lists notation used throughout the paper.

A. Preliminary Concepts

Definition 1 (Spatial Task) A spatial task, denoted by s =
(l, p, ϕ, C), has a location s.l, a publication time s.p, a valid
time ϕ (meaning that it will expire at s.p+ s.ϕ), and multiple
category labels s.C.

Definition 2 (Worker) A worker, denoted by w = (l, r),
consists of a location w.l and a reachable distance w.r. The
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TABLE I
SUMMARY OF NOTATION

Symbol Definition

s Spatial task
s.l Location of spatial task s
s.p Publication time of spatial task s
s.ϕ Valid time of spatial task s
s.C Categories of spatial task s
S A spatial task set
w Worker
w.l Location of worker w
w.r Reachable distance of worker w
W A worker set
if (w, s) Worker-task influence of worker w and spatial task s
A A task assignment
|A| The total number of assigned tasks in task assignment A
Aopt The optimal task assignment
A A task assignment set

reachable range of worker w is a circle with center w.l and
radius w.r, within which w can accept assignments.

A spatial task s can be completed only if a worker arrives

at its location before the expiration deadline s.p + s.ϕ. With

single-task assignment mode, the SC server assigns each task

to one worker at a time.

Definition 3 (Worker-Task Influence) Given a worker w
and a task s. Worker-task influence (calculated in Section III),
denoted as if (w, s), consists of w’s affinity towards s, the
probability of other workers visiting the location of s after
informed by w, and the probability of other workers who are
informed by w through social networks.

Definition 4 (Spatial Task Assignment) Given a set of tasks
S and a set of workers W , a spatial task assignment, denoted
by A, consists of a set of worker-task pairs of the form
(s, w), where task s is assigned to worker w satisfying the
spatio-temporal constraints, and where each worker or task
can be assigned at most once.

We use |A| to denote the total number of assigned tasks

in task assignment A. The problem investigated is stated as

follows:

ITA Problem Statement. Given a set of workers and a set

of tasks at the current time in an SC platform, our problem

is to find a task assignment Aopt that achieves the following

goals:

1) primary optimization goal: maximize the total number of

assigned tasks (i.e., ∀ Ai ∈ A (|Ai |≤|Aopt |)), where A denotes

all possible assignments; and

2) secondary optimization goal: maximize worker-task

influence of assignments.

Lemma 1 The ITA problem is NP-hard.

Proof We can prove the lemma through a reduction from the
0-1 knapsack problem, which is described as follows: Given
a set U with n items, in which each item ui is labelled with
a weight li and a value hi, the 0-1 knapsack problem is to
find a subset U∗ of U that maximizes

∑
ui∈U∗ hi subjected to∑

ui∈U∗ li ≤ L, where L is the maximum weight capacity.

Consider the following instance of the ITA problem. Given
a task set S with n tasks, each task si ∈ S is associated
with a worker (corresponding to the weight li = 1 of the 0-1
knapsack problem). Here, the number of workers is sufficiently
large. The value hi of each task si that is a function related to
task completion and worker-task influence, is at least as hard
as the hi (that is a constant) in the 0-1 knapsack problem,
so that this difference does not make our problem easier. In
addition, we have L workers. Therefore, the ITA problem is
to identify a task subset S∗ of S that maximizes

∑
si∈S hi

subjected to
∑

si∈S li ≤ L.
If the ITA problem instance can be solved in polynominal

time, a 0-1 knapsack problem can be solved by being
transformed to the corresponding ITA problem instance and
then it can be solved in polynominal time. This contradicts
the fact that the 0-1 knapsack problem is NP-hard [20], and
so there cannot be an efficient solution (i.e., in polynominal
time) to the ITA problem instance that is then NP-hard. Since
the ITA problem instance is NP-hard, the ITA problem is also
NP-hard.

B. Framework Overview

We propose a framework, Data-driven Influence-aware Task

Assignment (DITA), to solve the ITA problem. The framework

has two components: worker-task influence modeling and task

assignment, as shown in Figure 2.

The first component aims to calculate worker-task influence.

Specifically, we employ Latent Dirichlet Allocation (LDA) to

measure workers’ affinities (i.e., worker-task affinity) towards

tasks, where we treat the categories of tasks that workers have

already completed as documents to train the LDA model,

and then the categories of tasks and workers at the current

time are input into the trained LDA model to compute the

worker-task affinity. For worker willingness calculation, we

propose a Historical Acceptance (HA) algorithm to measure

the probability of a worker visiting the location of a task

based on the task-performing history of the worker and

the real-time locations of the worker and task. For worker

propagation, we first exploit an Independent Cascade (IC)

model to simulate information propagation process of tasks in

a given social network, and then we propose a Random reverse

reachable-based Propagation Optimization (RPO) algorithm to

calculate worker propagation based on IC and social networks.

In the task assignment component, considering the

spatio-temporal constraints (i.e., the reachable regions of

workers and expiration times of tasks) of workers and

tasks, we optimize the task assignment based on worker-task

influence at each time instance and propose a basic

Influence-aware Assignment (IA) method. Taking worker-task

influence and location entropy into account, we propose an

Entropy-based Influence-aware Assignment (EIA) method.

Moreover, a Distance-based Influence-aware Assignment

(DIA) method which considers worker-task influence and

workers’ travel costs is developed.
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Fig. 2. DITA Framework

III. WORKER-TASK INFLUENCE CALCULATION

We proceed to detail how to calculate worker-task influence

for a worker and a task. We cover worker-task affinity, worker

willingness, worker propagation and worker-task influence.

A. Worker-Task Affinity Calculation

In SC, different workers exhibit different affinities (i.e.,

preferences) for the same categories of tasks, leading to

different task-performing behaviors. For example, a worker

may like to report a hot spot, while another worker may

prefer to monitor traffic conditions. Since task categories

contain semantic information (e.g., restaurant) and the Latent

Dirichlet Allocation (LDA) model [21] performs well at

modeling semantic affinity (i.e., semantic matching) between

text documents by learning topics, we employ it to quantify

worker-task affinity.

In LDA, a document is regarded as a set of words generated

by several topics, where each topic is described by terms

following a probability distribution. The modeling process can

be formalized as follows:

P (vi|d) =
|Top|∑
j=1

P (vi|tj)P (tj |d)

Here P (vi|d) is the probability of term vi for a document

d and |Top| is the number of topics. Next, P (vi|tj) is the

probability of vi within topic tj , and P (tj |d) is the probability

of picking a term from tj in document d. LDA estimates

the topic-term distribution, P (vi|tj), and the document-topic

distribution, P (tj |d), using Dirichlet priors. It iterates multiple

times over each term in d until the parameters in LDA

converge. This way, we get the topic distribution of each

document. Each topic is a probability distribution over a set of

words. In the LDA model, words that are related semantically

have high probability of belonging to the same topic.

In order to adapt LDA to model worker-task affinity, we

treat each task category as a word, and we treat the categories

of tasks in the historical task-performing records of worker

A set of documents

LDA Topic 
distribution

LDA Training ݀ܿ௪భ

௜ݓ (ݐ|௜ݏ)ܲ(ݐ|௜ݓ)ܲ ௔ܲ௙௙(ݓ௜, (௜ݏ
Worker-Task 

Affinity Calculation

. . .
LDA

݀ܿ௪మ݀ܿ௪య

௜ݏ
݀ܿ௪೔݀ܿ௦೔

Historical 
task-performing 

records

Fig. 3. Worker-task Affinity Calculation

wi as a document, denoted by dcwi
. The documents across

all workers on an SC platform form a set of documents that

is used to train the LDA model, cf. Figure 3. Based on the

documents, LDA can learn topics. Each topic is represented by

a probability distribution over categories. For worker wi and

task si at the current time, we can use the trained LDA model

to calculate the topic distribution, where the topic distribution

of wi is calculated from the historical task-performing records

that reflect the preferred category distribution of wi, and the

topic distribution of si is calculated based on its categories.

Then the learned topics and the document dcsi formed by

the categories of the location of si are used to estimate the

worker-task affinity, Paff , as follows:

Paff (wi, si) =
∑

t∈Top
P (wi|t) · P (si|t),

where t denotes a topic and Top is a set of learned

topics. Further, P (wi|t) and P (si|t) quantify how well

topic t matches the topic distribution of wi’s historical

task-performing records and the topic distribution of task si,
respectively. A larger Paff (wi, si) value indicates that wi

is more likely to perform si, since the preferred category

distribution of wi and that of the task si are correlated better.

B. Worker Willingness Calculation

In general, different workers exhibit different willingness to

visit the location of a task. Previous studies only consider

real-time locations of workers and tasks [22], [23] when

assigning tasks. However, measuring a worker’s willingness to

visit the location of a task according to the distance between

the worker’s real-time location and the task location represents

an incomplete picture. The real-time location is temporary, and

this ignores the worker’s historical task-performing patters.

To tackle this issue, we propose a Historical Acceptance

(HA) approach to measure the willingness of a worker

w to visit the locations of particular tasks based on the

worker’s historical task-performing records (denoted as Sw)

and the real-time locations of workers and tasks, where

Sw = {(s1, tas1 , tls1), (s2, tas2 , tls2), . . . , (sn, tasn , tlsn)} and each

triplet (si, t
a
si , t

l
si) consists of task si, a task arrival time tasi ,

and a task completion time tlsi . The worker willingness is

measured as the probability that a worker moves from the

locations of the tasks they have performed to the location of

the current task.
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In particular, HA computes worker willingness in terms of

stationary distribution modeling of workers’ historical mobility

and movement probability density calculation.

1) Stationary Distribution Modeling of Workers’ Historical
Mobility: The stationary distribution of a worker’s historical

mobility captures the probability that a worker w stays at

the location of a performed task si denoted as Pw(w, si).
This probability can be computed using the Random Walk
with Restart (RWR) method, which is an efficient approach

to simulating the movement of objects [24]. In order to adapt

the RWR method to compute the stationary distribution of

a worker’s historical mobility, we exploit workers’ historical

task-performing records Sw (ordered by check-in time) to

construct an n × n weight matrix for worker w (w ∈ W ),

where n is the number of tasks performed by w. The weight of

item w′
ij in the i-th row and j-th column is set to 1/

∑n
j mij ,

where mij = 1 if w performed tasks at the j-th location;

otherwise, mij = 0.

2) Movement Probability Density Calculation: The

movement probability density of worker w is the probability

density of moving from the location of task si to the location

of the next task, si+1, denoted as fw(d(si, si+1)), where fw
is a probability density function and d(si, si+1) is the distance

between the location of si and the location of si+1. Previous

studies [25], [26] show that the movements of workers are

self-similar. Since the random variable described by the Pareto

distribution obeys the self-similarity property [27], we choose

the Pareto distribution to measure the movement probability

density of worker w, denoted as fw(x;π;ω) = πωπ

xπ+1 ,

where x is the distance between locations of tasks, π is

a shape parameter that can be calculated using maximum

likelihood estimation, and ω is the minimum value of x.

Since real-time tasks are not known in advance, we use Sw

(ordered by check-in time) to compute fw. Note that different

task-performing orders will lead to different fw. As a worker

may perform several tasks at the same location, the minimum

value of d(si, si+1) is 0, where si and si+1 are tasks in Sw.

We set xi of fw to d(si, si+1)+1 to avoid xi being 0. In this

case, ω = 1. Based on xi, we employ maximum likelihood

estimation to estimate π of fw. Further, π can be calculated

using the following equation:

d

dπ

|Sw|−1∏
i

π

xπ+1
i

= 0

where |Sw| is the number of performed tasks of w and xi ≥ 1.

Accordingly, π is given by Equation 1.

π =
|Sw|−1

∑|Sw|−1
i ln xi

, where
|Sw|−1∑

i
lnxi �= 0 (1)

Since a worker may stay at different locations of performed

tasks, we first need to compute the probability of worker w
staying at the location of a performed task si, and then we

combine the probability with the probability that w moves

from the location of si to the location of the current task s
to compute worker willingness. Based on Sections III-B1 and

III-B2, the willingness of w to visit the location of s can be

calculated as follows:

Pwil (w, s) =

Sw∑
si

Pw(w, si) ·
∫ ∞

d(si,s)
fw(x)dx

=

Sw∑
si

Pw(w, si) · (d(si, s) + 1)−π

(2)

C. Worker Propagation Calculation

When knowing information of a task, a worker has the

potential to propagate the task’s information to other workers

independently through social media. We propose worker
propagation to measure the probability of workers being

known tasks.

There are two main challenges when computing worker

propagation. First, since the information propagation in a

social network is complex, it is important to simulate

the propagation process reasonably. Second, based on the

propagation process, the computation of worker propagation

should be completed in limited time since we aim to

assign tasks to workers online. To address these challenges,

we propose an approximation method, called Random

reverse reachable-based Propagation Optimization (RPO), for

calculating the worker propagation.

1) Random Reverse Reachable Set Generation: We first

detail how to generate Random Reverse Reachable (RRR)

sets for workers, which will be used in the RPO method. The

definition of an RRR set follows.

Definition 5 (Random Reverse Reachable Set) Given a
social network G = (W,E), constructing the reverse graph
G′ of G and selecting a worker wi uniformly at random from
G′, a subgraph gi is a directed graph sampled from G′ under
a given propagation model. A random reverse reachable
(RRR) set for wi is a set of workers in gi that can reach wi.

To generate an RRR set for each worker, it is important

to select a suitable propagation model. Independent Cascade

(IC) [17], [28]–[33] is a commonly-used propagation model,

where users inform their neighbors independently. In our

ITA problem, a worker knowing a task has the potential

to propagate information about the task to the neighbors

independently, which can be well modeled by IC. Therefore,

we use the IC model to simulate the information propagation

process of tasks and sample subgraphs from G′ to generate

RRR sets.

The IC model is an iterative model. At the beginning of IC

model, a worker ws who knows task s is selected to inform

the neighbors independently. In each iteration, if a worker wi

has more than one neighbor knowing the task information in

the current iteration, the worker will be informed by these

neighbors independently. The probability, Pk (wi), of worker

wi being informed by the neighbors in the k -th iteration is

calculated as follows:

Pk (wi) = 1−
∏

wj∈NEk−1(wi)

(1− Pj(wj , wi)),
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where NEk−1(wi) is the neighbors of wi who know a

given task in the (k − 1)-th iteration, and Pj(wj , wi) is an

in-degree-based probability that neighbor wj of wi informs

wi, which is a ratio between 1 and wi’s in-degree.

Workers who are informed have only one chance to inform

their neighbors. In the k-th iteration of the IC model, a worker

who is not informed is added to a subgraph gs with the

probability Pk, and the edges connecting the worker and the

neighbors who are informed in the (k − 1)-th iteration are

added to gs with the probability Pj . When no new workers

are informed, the propagation process terminates, and gs is

constructed. Accordingly, the RRR set of worker ws is a set

of workers that can reach ws along a finite number of edges

in the directed graph gs.
2) Random Reverse Reachable-based Propagation

Optimization Method: Next, we present the Random

reverse reachable-based Propagation Optimization (RPO)

method.

Based on Definition 5, if a worker ws appears in an RRR

set of another worker wi, the propagation process from ws

should have a certain probability to inform wi. Specifically,

we can get following lemma.

Lemma 2 Given two workers ws, and wi, the probability that
wi is informed by ws under a propagation process equals the
probability that ws belongs to an RRR set of wi [30].

Given a set of N RRR sets, R = {R1, R2, . . . , RN}, and a

worker ws in G, let Ri (Ri ⊆ R) be a set of RRR sets that

are generated by worker wi in G. Based on Lemma 2 and

the linearity of expectation, we can calculate the informed

probability Ppro(ws, wi) of wi being informed by ws, as

follows:
Ppro(ws, wi) =

|W |
N

· E
[∑|Ri|

j=1
vj

]
, (3)

where vj = 0 if {ws} ∩ Rj = ∅; otherwise, vj = 1. Rj is

the j-th set of Ri, |W | is the number of workers in G, |Ri|
is the size of Ri, and E

[∑|Ri|
j vj

]
is the expected number

of RRR sets generated by wi that cover ws. To ensure that

the estimation of Ppro(ws, wi) is accurate, it is essential that

N is sufficiently large to ensure that
∑|Ri|

j vj not deviate

significantly from its expectation. The analysis of how to

choose a setting for N is covered in Section III-E.

The whole process of the RPO method is covered in

Algorithm 1. The main computational challenge is the huge

search space when enumerating all possible RRR sets of

each worker, which increases exponentially with respect to

the number of workers. Therefore, it is important to obtain a

limited number of RRR sets that make it possible to guarantee

an approximation ratio of the probability that workers are

informed. To achieve this, we propose two lower bounds on the

number of RRR sets (an iteration-based lower bound NR(k)
and a threshold-based lower bound N ′

R(γ)). Specifically,

given a worker ws who knows task s and a social network

G = (W,E) as input, Algorithm 1 iteratively generates

NR(k) RRR sets (stored in R) based on G (lines 4–6),

where NR(k) is the iteration-based lower bound on the

number of RRR sets. Then for each worker wi ∈ W , the

algorithm computes the number Np(wi) of workers which

wi can propagate the task information to based on the

current R and then finds the maximal Np(wi), denoted as

Nopt
p = maxwi∈W Np(wi) (lines 7–8). If Nopt

p is larger

than a threshold γ, a threshold-based lower bound N ′
R(γ)

on the number of RRR sets is computed based on the

threshold γ and Nopt
p (lines 9–11); otherwise, R is set to

∅ (lines 12–13). Next, the algorithm continues to generate

(N ′
R(γ) − |R|) RRR sets when the size of the current R

is too small, i.e., |R| < N ′
R(γ) that is computed in the

iteration (lines 16–17). Getting a set R of suitable RRR

sets, we can compute Ppro(ws, wi) (wi ∈ W ) (according

to Equation 3) and output the worker propagation for a

worker, i.e., WPws ← (Ppro(ws, w1), . . . , Ppro(ws, w|W |))
(lines 18–21). The computation of k , NR(k), Np(wi), N

opt
p ,

N ′
R(γ), γ and the approximation ratio are discussed in

Section III-E.

Algorithm 1: RPO

Input: a worker ws who knows task s; a social network G = (W,E)
Output: worker propagation WPws of ws

1 R ← ∅;
2 k ← |W |/2;
3 repeat
4 Compute NR(k);

// NR(k) is the iteration-based lower bound of the
number of RRR sets.

5 Generate NR(k) RRR sets based on G (according to
Section III-C1);

6 Insert these RRR sets into R;
7 Compute Np(wi) (wi ∈ W ) based on R;

// Np(wi) denotes the number of workers which wi

can propagate the task information to.

8 Find the maximal Np(wi), denoted as Nopt
p ;

9 if Nopt
p ≥ γ then

10 Compute N ′R(γ) based on Nopt
p ;

// N ′
R(γ) is the threshold-based lower bound of

the number of RRR sets.
11 break;

12 else
13 R ← ∅;
14 k ← k/2;

15 until k = 2;
16 if |R| < N ′R(γ) then
17 Generate (N ′R(γ)− |R|) RRR sets and insert them into R;

18 for each wi ∈ W \ {ws} do
19 Compute Ppro(ws, wi) based on R (according to Equation 3);

20 WPws ← (Ppro(ws, w1), . . . , Ppro(ws, w|W |));
21 Return WPs

The complexity of RPO is dominated by the generation of

RRR sets, which takes O(|E|+|R|·|M |·|E|/|W |) time, where

|E| is the number of edges in G, |R| is the size of R, |M |
is the number of workers who can be informed by the greedy

informed worker (see Definition 8), and |W | is the number of

workers in G.

D. Worker-Task Influence Calculation

We combine worker-task affinity Paff , worker willingness

Pwil , and worker propagation WPws to calculate the
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worker-task influence, if (ws, s), of worker ws and task s, as

follows:

if (ws, s) = Paff (ws, s)·
∑

wi∈W\{ws}
Pwil(wi, s)·Ppro(ws, wi),

where ws is a worker who knows the information of s, W
denotes the worker set in the social network, and Ppro(ws, wi)
is the i-th value in WPws .

E. Feasibility Analysis

In order to guarantee an approximation ratio of computing

worker propagation based on Random Reverse Reachable

(RRR) sets, we present a feasibility analysis of computing

a suitable number N of RRR sets. First, we introduce the

notions of informed range and martingale and then use these to

propose lemmas that facilitate the computation of the number

of RRR sets. Then corresponding proofs are provided to

guarantee a high approximation ratio between the estimated

worker propagation and the worker propagation computed

based on RRR sets. The notions of informed range and

martingale [34] are defined as follows:

Definition 6 (Informed Range) Given a worker ws and an
RRR set R = {R1, R2, . . . , RN}, the informed range σ(ws)
of ws is the estimated fraction of workers that are informed
by ws.

σ(ws) =
∑|W |

i=1
Ppro(ws, wi) =

|W |
N

· E
[∑N

j=1
vj

]
,

where vj = 0 if {ws} ∩Rj = ∅; otherwise, vj = 1.

Definition 7 (Martingale) A sequence of random variables
x1, x2, . . . is a martingale if and only if E[|xi|] < +∞ and
E[xi|x1, x2, . . . , xi−1] = xi−1 for any i.

An important property of martingales [34] is shown as

follows:

Lemma 3 Given a martingale x1, x2, . . . such that |x1| ≤ l1
and |xj − xj−1| ≤ l1 for j ∈ [2, i], and Var [x1] +∑i

j=2 Var [xj |x1, x2, . . . , xj−1] ≤ l2, for any ε > 0,

Pr [xi − E[xi] ≥ ε] ≤ exp

(
− ε2

2
3 l1ε+ 2l2

)
,

where Var [·] is the variance of a random variable.

Given a worker ws, since each worker wi is selected

uniformly at random to generate Ri and the generation

of Ri is independent of R1, R2, . . . , Ri−1, we have

E[vi|v1, v2, . . . , vi−1] = E[vi] = σ(ws)/|W |. Let α =
σ(ws)/|W | and xi =

∑i
j=1(vj −α). It is clear that E[xi] = 0

and E[xi|x1, x2, . . . , xi−1] = xi−1, which indicates that

x1, x2, . . . , xN is a martingale. Moreover, based on xi =∑i
j=1(vj − α), it is clear that |x1| ≤ 1 and |xi − xi−1| ≤ 1

for any i ∈ [2, N ]. Combining this with the independence of

Ri, we have:

Var [x1]+
∑N

i=2
Var [xi|x1, x2, . . . , xi−1] = Nα(1− α) ≤ Nα

(4)

Based on Lemma 3 and Equation 4, the following corollary

is derived.

Corollary 1 For any ε > 0,

Pr

[∑N

j
vj −N · α ≥ ε ·N · α

]
≤ exp

(
− ε2

2 + 2
3ε

·N · α
)

We obtain the corollary by applying Lemma 3 to

−x1,−x2, . . . ,−xN .

Corollary 2 For any ε > 0,

Pr

[∑N

j
vj −N · α ≤ −ε ·N · α

]
≤ exp

(
−ε2

2
·N · α

)

Given a set R = {R1, R2, . . . , RN} of RRR sets, let fR(ws)
be the fraction of RRR sets in R that cover ws. It is clear that

the number Np(ws) of workers who can be informed by ws

is |W | · fR(ws). Based on Corollary 2, we have following

lemma.

Lemma 4 Let λ ∈ (0, 1), ε > 0, and

N
′
=

2|W | · ln(1/λ)
σ(ws) · ε2

(5)

If N
′ ≤ N , Np(ws) ≥ (1 − ε) · σ(ws) holds with at least

probability 1− λ.

Lemma 4 shows that when N ′ is sizable, the calculation of

worker propagation based on Equation 5 guarantees a (1 −
ε)-approximate solution. However, the value of σ is different

for different workers, which makes it hard to derive a suitable

value of N ′. Moreover, N ′ should be as smaller as possible to

reduce the computation time. To address this issue, we derive

a lower bound on N
′
. Let wτ

s be a worker with maximum

informed range, i.e., σ(wτ
s ) ≥ σ(ws), for any ws in G. We

can rewrite Lemma 4 as follows:

Lemma 5 Let λ ∈ (0, 1), ε > 0, and

N ′
R(γ) =

2|W | · ln(1/λ)
σ(wτ

s ) · ε2
If N ′

R(γ) ≤ N , Np(w
τ
s ) ≥ (1− ε) · σ(wτ

s ) holds with at least
probability 1− λ.

The γ in Lemma 5 is a threshold, to be computed in

Lemma 6. Since we aim to guarantee an approximation that

is as high as possible, the setting of λ should be as low as

possible (e.g., λ = 1/|W |o, where o ≥ 1).

However, in real cases, σ(wτ
s ) is unknown in advance. To

address this problem, we derive a lower bound on σ(wτ
s ) with

the help of a so-called greedy informed worker that can be

calculated in advance. A greedy informed worker is defined

as follows:

Definition 8 (Greedy Informed Worker) A greedy
informed worker wθ

s is a worker generated by a greedy
approach that maximizes fR: wθ

s = arg max
wi∈W

fR(wi).

In order to use wθ
s to derive the lower bound on σ(wτ

s ), we

construct a test T (·) related to wθ
s on a set of values (denoted
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as K = {k1, k2, . . .}) and run the test on K. If ki > σ(wτ
s )

then T (ki) = false with a high probability, and ki can be

considered as a lower bound of σ(wτ
i ). Let Nopt

p = |W | ·
fR(w

θ
s). Based on Corollary 1, we can construct T (·) based

on following lemma:

Lemma 6 Given ε∗ > 0, let ki ∈ K, γ = (1 + ε∗) · ki,
λ∗ ∈ (0, 1), and

N ≥ NR(ki) =

(
2 + 2

3ε
∗) · (ln(|W |) + ln(1/λ∗)) · |W |

ε∗2 · ki
If σ(wτ

s ) < ki, we get Nopt
p < γ with at least probability

1− λ∗.

Based on Lemma 6, it is easy to see that if Nopt
p ≥ γ,

then σ(wτ
s ) ≥ ki holds at least with probability 1 − λ∗,

and σ(wτ
s ) can be set to Nopt

p · ki/γ. We can set K =
{|W |/2, |W |/4, |W |/8, . . . , 2} and then run the test T (ki) :
Nopt

p ≥ γ on O(log2 |W |) values of K to compute the

lower of σ(wτ
s ). Moreover, since we need to guarantee the

approximation with high probability (e.g., 1 − 1/|W |o), the

setting of λ∗ can be 1
|W |o·log2 |W | .

Based on Lemmas 5 and 6, N should be set

to max{N ′
R(γ), NR(ki)} to guarantee the approximation.

However, it is difficult to choose suitable settings for ε
and ε∗ that minimize max{N ′

R(γ), NR(ki)}. To address that

problem, max{N ′
R(γ), NR(ki)} can be approximated with a

simple function of ε and ε∗, and then ε∗ =
√
2ε is derived as

the minimizer of the function.

The proofs of Lemmas 4, 5, and 6 are found in the technical

report1.

IV. INFLUENCE-AWARE TASK ASSIGNMENT

We propose three algorithms, including basic,

Entropy-based, and Distance-based Influence-aware

Assignment, abbreviated IA, EIA, and DIA, respectively, that

solve the ITA problem.

A. Influence-aware Assignment

Taking worker-task influence as the priority of task

assignment, we propose a basic Influence-aware Assignment

(IA) algorithm to solve the ITA problem by transforming it to

a Minimum Cost Maximum Flow (MCMF) [11] problem.

To adapt MCMF to the ITA problem, we first construct

a task assignment graph based on the available workers and

tasks. Specifically, given a set of workers W = {w1, w2, . . .},

and a set of tasks S = {s1, s2, . . .} at time t, we construct a

graph G = (N,E), where N and E denote sets of nodes and

edges, respectively. Let |N | = |W |+ |S|+2 and |E| = |W |+
|S|+m, where m is the number of available assignments for all

workers. Since tasks expire at their deadlines and workers only

accept tasks in their reachable range, the available assignments

for worker w, denoted as w.A, should satisfy the following

conditions:

i) task s is located in the reachable circular range of worker

w, i.e., d(w.l, s.l) ≤ w.r.

1http://zheng-kai.com/paper/icde 2022 chen long.pdf

c=1, w=0 c=1, w=0

c=1, w=0.52

c=1, w=0.37

c=1, w=0.3

c=1, w=0.1

Fig. 4. Task Assignment Graph

ii) worker w has enough time to reach the location of s
before it expires, i.e., t+ t(w.l, s.l) ≤ s.p+ s.ϕ.

We use d(w.l, s.l) to denote the Euclidean distance between

w.l and s.l, and use t(w.l, s.l) to denote the travel time from

w.l to s.l. For the sake of simplicity, we assume all the workers

share the same travel speed, meaning that the travel time and

distance are equivalent. However, the proposed algorithms can

also address the cases where workers are moving at different

speeds. Let |w.A| be the number of available assignments for

worker w, and thus m can be derived by summing |w.A| for

all workers: m =
∑

w∈W |w.A|.
In graph G, nodes ni and n|W |+j correspond to a worker

wi and a task sj , respectively. Moreover, we add two new

nodes (denoted as n0 and n|W |+|S|+1) as the source (Ns)

and destination (Nd), respectively. An example graph G for

four workers and four tasks at the same time is illustrated in

Figure 4. The graph is generated by following steps:

i) Ns connects all worker nodes, and the capacities of the

corresponding edges are set to 1, i.e., c = 1, since each worker

can perform only one task at a time. The costs of these edges

are set to 0.

ii) Each task node connects with Nd, and the capacities of

the corresponding edges are set to 1, indicating that each task

can be assigned to at most 1 worker. The costs of these edges

are set to 0.

iii) If the assignment (sj , wi) is available, i.e., (sj , wi) ∈
w.A, we add an edge from worker node ni to task node

n|W |+j . The capacities of the corresponding edges are set to

1, and the cost (denoted as w(ni, n|W |+j)) is the ratio between

1 and the worker-task influence, if (wi, sj), of wi and sj , i.e.,

w(ni, n|W |+j) =
1

if (wi,sj)+1 .

Then the task assignment problem is converted into an

MCMF problem in the directed graph G from Ns to Nd,

which is to achieve the maximum flow (i.e., maximizing the

task assignments) while minimize the cost (i.e., maximizing

worker-task influence). The Ford-Fulkerson algorithm [35] is

employed to compute the maximum flow of the graph, and

then linear programming is used to minimize the cost of the

flow [11].

B. Entropy-based Influence-aware Assignment (EIA)

In SC, each task has a location. If many workers are close to

a task, i.e., the relative proportion of workers close to the task

is high, the task is more likely to be completed. Considering

that location entropy [11], [36] is an efficient metric to measure

the total number of workers in the location of a task as well as

the relative proportion of their visits to that location, we use it
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to measure the relative proportion of workers in the location

of a specific task. Lower location entropy indicates that the

distribution of the visits to that task is restricted to only a few

workers. To maximize the total number of task assignments, a

task located in a region with smaller location entropy should

be given higher priority when making assignments. Let Numw

denote the historical number of visits of worker w to the

location of task s, and let Nums denote the total number of

visits of all workers to the location of task s. Then the location

entropy s.e of task s, is computed as follows:

s.e = −
∑

w∈Ws

Ps(w) · lnPs(w),

where Ws is a set of workers that have performed task s
historically, and Ps(w) = Numw/Nums.

Considering worker-task influence and location entropy,

EIA adapts IA by setting the cost w(ni, n|W |+j) of each edge

that connects wi and sj to (s.e + 1)/(if (wi, sj) + 1), where

if (wi, sj) is the worker-task influence of worker wi and task

sj .

C. Distance-based Influence-aware Assignment (DIA)

The IA algorithm fails to consider travel costs between the

locations of workers and tasks. Workers are more likely to

perform nearby tasks [1], [19], and travel cost is a critical

factor when workers choose which tasks to perform. We

compute the travel cost between a worker wi and a task sj ,

denoted as d(wi.l, sj .l), using Euclidean distance. Workers

who are closer to tasks will be given higher priority to

perform them. To achieve this, we propose a Distance-based

Influence-aware Assignment (DIA) algorithm that uses travel

costs to discount worker-task influence. Specifically, DIA

modifies IA by setting the cost w(ni, n|W |+j) of each edge

that connects wi and sj to 1/(F (wi.l, sj .l) · if (wi, sj) + 1),
where F (wi.l, sj .l) = 1−min(1, d(wi.l, sj .l)/wi.r).

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Due to the lack of benchmarks for spatial crowsourcing

task assignment algorithms, two check-in datasets consisting

of social networks of workers, and workers’ check-ins from

Brightkite (BK) [37] and FourSquare (FS) [38] are used to

simulate a spatial crowdsourcing scenario. This is common

practice when evaluating SC platforms [3], [13], [39], [40].

Since BK does not contain category information of venues, we

exact categories of the venues with the aid of the FourSquare

API2. BK has 58,228 users, 214,078 social connections, and

4,491,143 check-ins from April 2008 to October 2010. FS

has 11,326 users, 47,164 social connections, and 1,385,223

check-ins from January to December 2011.

We assume that all users are workers since users who

check in at different spots are good candidates to perform

nearby spatial tasks, and we assume that their locations are

those of the most recent check-ins. Moreover, we set the time

granularity to one day, during which the available tasks and

2https://developer.foursquare.com/docs/

workers are entered into our framework. We also assume that

users who check in at a time instance are available workers

for that time instance, and we assume that a worker is online

until the worker is assigned a task. For each check-in venue,

we use its location and the earliest check-in time of the day

as the location and publication time of a task. Further, the

categories of check-in locations are regarded as task categories.

We set the number of topics used to extract worker-task affinity

to 50, i.e., |Top| = 50. The informed probability of each

social network edge, e, is set to 1/ide [29], [31], [41], i.e.,

Pj = 1/ide, where ide denotes the number of edges with the

same end point with e. The parameters ε and o in the Random

reverse reachable-based Propagation Optimization approach

are set to 0.1 and 1, respectively. Travel costs are calculated

using Euclidean distance, and the speeds of workers is set

to 5 km/h. The default values of all parameters used in the

experiments are summarized in Table II. In task assignment

experiments, we run the algorithms over 4 days of a month on

BK and FS, and we report average results. All experiments are

run on a Linux (Ubuntu 16.04) machine with Intel(R) Xeon(R)

E5-2650 v4 2.20GHz processor and 256G memory.

TABLE II
PARAMETER SETTINGS

Parameter Default value

Number of tasks |S| 1500
Number of workers |W | 1200
Valid time of tasks ϕ 5 h
Workers’ reachable radius r 25 km

B. Experimental Results

1) Influence Modeling Performance: We first evaluate the

performance of worker-task affinity, worker willingness, and

worker propagation and their impact on worker-task influence.

We consider the IA algorithm and three variants of it to study

the contribution to worker-task influence of the three aspects.

The methods are as follows:

i) IA: Our basic Influence-aware Assignment algorithm,

which considers worker-task influence and aims to maximize

total task assignment and worker-task influence.

ii) IA-WP: A variant of IA that considers worker willingness

and worker propagation.

iii) IA-AP: A variant of IA that considers worker-task

affinity and worker propagation.

iv) IA-AW: A variant of IA that considers worker-task

affinity and worker willingness.

Since we aim to maximize the influence of tasks, we

propose Average Influence, AI , to evaluate the performance

of each algorithm, which is calculated as follows:

AI =

∑
(s,w)∈A if (w, s)

|A| ,

where if (w, s) is the worker-task influence of worker w and

task s, and |A| is the number of assignments.

Due to the space limitation, we only show the effect of

|S|. Additional results can be found in an extended technical

report. As illustrated in Figure 5, IA achieves the largest

AI, followed by IA-AP, for any |S|. The reason is that IA
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considers worker-task affinity, worker willingness and worker

propagation, while none of the variants consider all aspects.

IA-AP performs better than IA-WP and IA-AW. This may be

due to the fact that the average probability of workers visiting

locations of tasks is small, which means that the weight of

worker willingness on computing task influence is smaller than

that of worker-task affinity and worker propagation. Another

observation is that AI of IA is highest when |S| = 500.

The reason is that the number of workers who can generate

larger worker-task influence is small and that most of them

are selected when |S| = 500.
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Fig. 5. Effect of |S|
2) Performance of Influence-aware Task Assignment: Next,

we evaluate the different task assignment algorithms.

i) MTA: The Maximum Task Assignment algorithm [11]

that maximizes the number of assigned tasks by computing

the maximum flow of the task assignment graph.

ii) IA: Our basic Influence-aware Assignment algorithm.

iii) EIA: Our Entropy-based IA algorithm.

iv) DIA: Our Distance-based IA algorithm.

When a worker knows a task, the worker will propagate

the information of the task to other workers in the social

network. More workers knowing the information of the task

leads to larger worker-task influence. Thus we introduce a

metric, Average Propagation, AP , to evaluate the performance

of the task assignment algorithms.

AP =

∑
(si,wi)∈A

∑
wj∈W\{wi} Ppro(wi, wj)

|A| ,

where W is the set of all workers and Ppro(wi, wj) is the

probability that worker wj knows task si from worker wi.

Four additional metrics are also used to compare the

algorithms: 1) CPU time: the CPU time costs for computing

a task assignment during a time instance; 2) the total number

of assigned tasks; 3) AI ; and 4) travel cost: the average travel

costs for workers performing tasks.

Effect of |S|. We first study the effect of the number of

tasks. We generate five datasets containing 500 to 2,500 tasks

by random selection from the original dataset. As shown in

Figures 6(a) and 7(a), the CPU costs of all methods exhibit

a similar increasing trend when |S| grows. The reason is that

a larger |S| means that the task assignment graph becomes

larger, which results in higher CPU time to compute task

assignments. We can see that the CPU time is highest for

EIA, followed by IA, DIA, and MTA. However, the number

of tasks assigned by EIA is larger than those of the others

(see Figures 6(b) and 7(b)), which demonstrates the superiority

of the location entropy strategy. In Figures 6(c) and 7(c), IA

has the largest Average Influence, AI , followed by DIA, EIA,

and MTA. This is due to the fact that EIA and DIA adopt

the location entropy and travel cost strategies, respectively,

which reduces the effect of worker-task influence. DIA takes

into account the travel cost of workers with the result that the

worker willingness (see Equation 2) of DIA is larger than that

of EIA. Thus, the AI of DIA is larger than that of EIA for all

values of |S|. As expected, the AP of IA, EIA, and DIA is

larger than that of MTA (see Figures 6(d) and 7(d)). The reason

is that worker propagation is considered in IA, EIA, and DIA,

while being ignored in MTA. Since workers who can generate

larger worker propagation have priority to perform tasks, we

see that with the increase of |S|, workers with smaller worker

propagation have more chances to perform tasks. Moreover,

DIA yields the smallest average travel costs, as shown in

Figures 6(e) and 7(e). This is due to the fact that DIA takes into

account the travel cost. Workers who are closer to tasks will be

given higher priority to perform them. The average travel costs

of all algorithms decrease with the increase of |S|, since the

probability of assigned tasks located near workers increases.

Effect of |W |: Next, we study the effect of |W | by varying

it from 400 to 2,000. Figures 8(a) and 9(a) show that the
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CPU time increases when |W | grows. The reason is that more

workers tend to have more available task assignments, which

leads to more edges in the task assignment graph. Since more

workers can take part in task assignment, more tasks can be

assigned, so the number of assigned tasks grows with the

increase in the number of workers (see Figures 8(b) and 9(b)).

As shown in Figures 8(c) and 9(c), the AI of IA, EIA, and

DIA are larger than that of MTA. Figures 8(d) and 9(d) show

that the AP of all methods changes randomly. The reason

may be that workers are selected at random from the original

datasets, which means that workers who can generate larger

AP have probability of being selected for |W |. Moreover, the

average travel cost of DIA is the smallest, and that of MTA is

the highest (see Figures 8(e) and 9(e)). The reason is that DIA

takes workers’ travel costs into account, while MTA disregards

any location information.

Effect of ϕ: As expected, the CPU costs of all methods

increase when ϕ grows (see Figures 10(a) and 11(a)). This

occurs because workers can reach more tasks when ϕ grows,

which means that the number of available task assignments

increases, i.e., more edges exist in the task assignment graph.

As shown in Figures 10(b) and 11(b), the number of assigned

tasks of all methods grows with growing ϕ. The reason is

that the task assignment graph becomes larger with larger ϕ,

which means that the probability of workers being assigned

a task increases. Figures 10(c), 10(d), 11(c), and 11(d) show

that the AI and AP of IA, EIA, and DIA are larger than for

MTA. The average travel costs of MTA are larger than those of

other algorithms (see Figures 10(e) and 11(e)). Moreover, the

average travel costs of all methods increase when ϕ grows

(see Figures 10(e) and 11(e)). The reason is that with the

increase of ϕ, the probability of workers performing tasks with

larger travel costs increases, which means that some workers

are assigned tasks with larger travel costs. The average travel

costs of EIA are larger than those of IA and DIA since tasks

with lower location entropy have higher priority to be assigned

when applying EIA, which indicates workers travel longer to

reach tasks.

Effect of r: We proceed to consider the effect of r by varying

it from 5 to 25 km. Figures 12(a), 12(b), 13(a) and 13(b)

show that the CPU time and the number of assigned tasks of

all methods exhibit a similar increasing trend when r grows.

The reason is that with the increase of r, more tasks are

available in each worker’s reachable range, which means that

each worker has higher probability to be assigned a task.

It can also be seen that the gap in the number of assigned

2151

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on November 10,2022 at 07:26:13 UTC from IEEE Xplore.  Restrictions apply. 



5 10 15 20 25

400

800

1200 MTA IA
EIA DIA

C
PU

tim
e

(m
s)

Reachable radius of worker (km)

(a) CPU Time

5 10 15 20 25
700

800

900

1000

MTA IA
EIA DIA

N
o.

of
as

si
gn

ed
ta

sk
s

Reachable radius of worker (km)

(b) Number of Assigned
Tasks

5 10 15 20 25
0.00

0.08

0.16

0.24 MTA IA
EIA DIA

A
I

Reachable radius of worker (km)

(c) Average Influence

5 10 15 20 25
0

10

20

MTA IA
EIA DIA

A
P

Reachable radius of worker (km)

(d) Average Propagation

5 10 15 20 25
0

3

6

9

MTA IA
EIA DIA

Tr
av

el
co

st
(k

m
)

Reachable radius of worker (km)

(e) Travel Cost

Fig. 12. Effect of r on BK

5 10 15 20 25
0

1000

2000

3000

4000
MTA IA
EIA DIA

C
PU

tim
e

(m
s)

Reachable radius of worker (km)

(a) CPU Time

5 10 15 20 25
700

800

900

1000

1100 MTA IA
EIA DIA

N
o.

of
as

si
gn

ed
ta

sk
s

Reachable radius of worker (km)

(b) Number of Assigned
Tasks

5 10 15 20 25
0.00

0.04

0.08

0.12

0.16 MTA IA
EIA DIA

A
I

Reachable radius of worker (km)

(c) Average Influence

5 10 15 20 25
0

3

6

9 MTA IA
EIA DIA

A
P

Reachable radius of worker (km)

(d) Average Propagation

5 10 15 20 25
0

3

6

9

MTA IA
EIA DIA

Tr
av

el
co

st
(k

m
)

Reachable radius of worker (km)

(e) Travel Cost

Fig. 13. Effect of r on FS

tasks between EIA and the other approaches increases. The

reason is that when r grows, the number of tasks that are far

from workers increases, and the probability of workers accept

tasks that are far from them is small. When applying EIA,

the tasks with fewer workers nearby have higher priority of

being assigned, increasing the probability that workers accept

tasks that far from them, which leads to more assignments. As

illustrated in Figures 12(c), 12(d), 13(c), and 13(d), the AI and

AP of MTA are lower than for the other approaches, which

demonstrates the superiority of the influence-aware assignment

strategy. Since more tasks are assigned and workers can reach

tasks with larger travel costs when r grows, the average travel

costs of all methods increase (cf. Figures 12(e) and 13(e)).

According to the above analysis, the time cost of MTA is the

lowest, while the number of assigned tasks, Average Influence

(AI ), and Average Propagation (AP ) of MTA are the smallest.

IA has the largest AI value because other the algorithms adopt

different strategies to improve the number of assigned tasks,

which reduces the effect of worker-task influence. EIA is more

time-consuming, but also achieved larger numbers of assigned

tasks than the other algorithms. The travel cost of DIA is the

smallest since it takes travel costs into account when assigning

tasks.

VI. RELATED WORK

Spatial Crowdsourcing (SC) has been the subject of a

range of studies [5], [8], [9], [42]–[46]. One of the core

problems in SC is task assignment. Kazemi et al. [11] consider

two task publication modes, namely Worker Selected Tasks

(WST) and Server Assigned Tasks (SAT). In WST mode,

workers can choose nearby spatial tasks without the need to

coordinate with the SC-server. In SAT mode, the server assigns

tasks to workers with the aim of maximizing the number of

assigned tasks [1], [3], [47], [48] or maximizing the number of

performed tasks for a worker with optimal schedule [13]. Zeng

et al. [49] study a latency-oriented task completion problem

that addresses the trade-off between quality and latency for

task assignment. Cheng et al. [50] focus on cooperation-aware

spatial crowdsourcing, where more than one worker is required

to complete a task. In contrast to these studies, we study a

novel task assignment problem based on worker-task influence.

Next, quality assurance is a core challenge in spatial

task assignment. Workers tend to complete tasks with

good quality if a quality strategy exists. Zhao et al. [48]

study preference-aware task assignment, which considers

temporal preferences of workers. Zhao et al. [51] propose

a preference-aware task assignment for on-demand taxi

dispatching that aims to maximize the expected total profits.

However, these studies simply infer workers’ preferences from

historical task-performing records, and they ignore workers’

social impact.

Some recent studies try to improve task assignment based on

social networks. Li et al. [14] focus on group task assignment,

which employs social features to learn social impact-based

preferences of different worker groups. Wang et al. [52]

propose two algorithms, Basic-Selector and Fast-Selector, to

select a subset of workers to maximize the temporal-spatial

coverage. However, these studies ignore the interactions

among all workers in social networks and workers’ long-term

task performing patterns.

VII. CONCLUSION

In this paper, we take an important step towards effective

task assignment in spatial crowdsourcing that takes into

account worker-task influence. Unlike most existing studies

that only consider real-time worker and task locations, we

further consider social networks to capture the interactions

among workers, and we employ historical task-performing

records to extract long-term task performing patterns of

workers. We propose three task assignment algorithms that

maximize the number of assigned tasks and worker-task

influence. To the best of our knowledge, this is the first study

in spatial crowdsourcing that considers worker-task influence

in task assignment. An extensive empirical study based on

real-world data demonstrates that the proposed methods can

significantly improve the effectiveness of task assignment.
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