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Abstract—Due to the prevalence of GPS-enabled devices
and wireless communication technology, spatial trajectories that
describe the movement history of moving objects are being
generated and accumulated at an unprecedented pace. However,
a raw trajectory in the form of sequence of timestamped locations
does not make much sense for humans without semantic represen-
tation. In this work we aim to facilitate human’s understanding
of a raw trajectory by automatically generating a short text to
describe it. By formulating this task as the problem of adaptive
trajectory segmentation and feature selection, we propose a
partition-and-summarization framework. In the partition phase,
we first define a set of features for each trajectory segment
and then derive an optimal partition with the aim to make the
segments within each partition as homogeneous as possible in
terms of their features. In the summarization phase, for each
partition we select the most interesting features by comparing
against the common behaviours of historical trajectories on the
same route and generate short text description for these features.
For empirical study, we apply our solution to a real trajectory
dataset and have found that the generated text can effectively
reflect the important parts in a trajectory.

I. INTRODUCTION

Driven by major advances in sensor technology, GPS-
enabled mobile devices and wireless communications, a large
amount of data recording the motion history of moving ob-
jects, known as trajectories, are currently being generated
and managed in scores of application domains. In the past
few years, a lot of research works focused on the trajectory
analyzing. Effective index structures [35], [26], [3], [25], [5],
[10], [34], [6], [14], [27] are built to manage trajectories
and support high performance trajectory queries. Data mining
methods are applied on trajectories to detect important points
of interest (POI) and find the popular route from a source
to a destination [17], [16], [15], [19], [40]. Attentions are
also drawn to semantic representation or interpretation of
trajectory data by associating or annotating GPS locations
with semantic entities [38], [30]. Despite the huge efforts
which have been made on trajectory management and mining,
trajectory data itself is still hard for humans to understand.
Table I demonstrates how a raw trajectory is represented in
databases, which is a sequence of triples 〈longitude, latitude,
timestamp〉. In order to facilitate better interpretation of raw
trajectories, researchers have proposed several models by as-
sociating GPS locations with semantic entities such as POIs,
roads, regions, resulting in semantic trajectories or annotated
trajectories [38], [30]. Fig. 1(a) demonstrates how the raw

TABLE I. TRAJECTORY IN DATABASE

Latitude Longitude Time-stamp
39.9383 116.339 20131102 09:17:56

39.9382 116.337 20131102 09:18:02

· · · · · · · · ·
· · · · · · · · ·

39.9259 116.310 20131102 09:33:26

39.9253 116.310 20131102 09:34:31

trajectory in Table I is shown on a map. From Fig.1(a) we
can see that graphical interpretation of the trajectories makes
it easier for humans to understand the travel history of this
moving object. Nevertheless semantic trajectories have their
disadvantages in terms of expressiveness and data volume.

• Expressivity. Semantic trajectories cannot intuitively
express the travel behaviours relating to temporal
attributes such as overspeed, sharp speed change, long
stopover, etc. Moreover, they cannot highlight the
‘interesting’ parts of the trajectories such as significant
landmarks and important roads. Although all these
information have been encoded in semantic trajecto-
ries already, it needs substantial manual efforts and
expertise to find out.

• Data volume. Essentially a semantic trajectory is an
enriched version of the raw trajectory, i.e., each space-
time point is attached with a set of semantic attributes.
Therefore the volume of semantic trajectories can be
excessive for storage, processing and communication.

To address these drawbacks of semantic trajectories, we
take the philosophy from text summarization in the field of in-
formation retrieval, and propose a partition-and-summarization
framework. More specifically, given a raw trajectory and
external semantic information as inputs, our framework will
automatically generate a short text to highlight the significant
semantic behaviour of this trajectory. Fig. 1(b) exemplifies the
expected summarization for the given trajectory. We find there
are several benefits by translating a raw trajectory into text.
First, the information conveyed in the text are strategically
focused on the most ‘interesting’ parts of the trajectories, thus
making more sense for humans. Second, as the output of our
framework is a summarization rather than transformation of
raw trajectories (like semantic trajectories), the output text
is lightweight and easy to store and communicate. Third,
trajectories collected from different sources may have different
formats and schema, but they can all be translated to texts
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(a) Trajectory aligned on a map (b) Summary of the trajectory

Fig. 1. Making sense of trajectory data

with similar style. Fourth, various well-studied text mining
algorithms can be applied to the trajectory summaries and
valuable semantic knowledge may be discovered.

Trajectory summarization can be used in many applica-
tions. By embedding the trajectory summarization technique
in GPS modules of cars and cells, an infraction reminder can
be created. Every time some driving infractions occur, the
driver can receive the infraction travel summary. Also, during
traveling, an automatically generated trajectory summary is a
good travel dairy, which can be shared to friends via Twitter or
Facebook. In the meantime, the trajectory summary can assist
blind people to understand the travel history using TTS (Text
To Speech) techniques.

Nevertheless this task is faced with several challenges.
A whole trajectory seldom has the same travel behaviors
uniformly. Usually a trajectory consists of several parts where
each part has very different travel behaviors. For example, in
Fig. 1(b) the vehicle travels in normal speed in the first half
of the trajectory, but in significantly lower speed than normal
in the second half. Hence the trajectory should be partitioned
into two parts and described separately. Thus, how to properly
partition the trajectory is the first question. However, even
within a trajectory partition, there are many kinds of travel
behaviors to be described, It is non-trivial how to choose
the most interesting or significant travel behaviors of each
partition. To tackle these challenges, we propose a partition-
and-summarization framework: (1) The partition phase tries
to find an optimal partition by minimizing the variation of
predefined features for the trajectory segments within the same
partition. Through this partition, we are able to use more
compact representation to summarize each partition. (2) The
summarization phase exploits the common patterns learned
from historical trajectories, to measure the unusualness of each
feature, and generate textual description for the most unusual
features with a predefined template. We also implemented this
framework in a prototype system—STMaker [32].

To sum up, we make the following major contributions in
this paper.

• We identify the limitations of raw and semantic tra-
jectories in terms of their interpretability by humans,
and take the initiative to describe individual trajectory
with summary texts automatically.

• We develop a partition-and-summarize framework to
tackle several challenges of our proposals including
granularity control and feature selection.

• We conduct extensive experiments based on a large-
scale real trajectory dataset, which empirically demon-
strates that the generated textual descriptions can
reflect the most significant features of trajectories and
are easier for humans to understand.

The remainder of this paper is organized as follows. Sec-
tion II introduces the preliminary concepts and the trajectory
preprocessing. Major features used in the paper are presented
in III. We elaborate the details of the two phases, trajectory
partitioning and feature selection,in Section IV and Sec. V
respectively. We discuss how to construct summary text from
features and how to extend customized features to the system
in Section VI. The experimental observations are presented
in Section VII, followed by a brief review of related work
in Section VIII. Section IX concludes the paper and outlines
some future work.

II. PROBLEM STATEMENT

In this section, we introduce some preliminary concepts,
and formally define the summarization process. Table II sum-
marizes the major notations used in the rest of the paper.

TABLE II. SUMMARIZE OF NOTATIONS

Notation Definition
T a raw trajectory
l a landmark in the space
l.s the significance of a landmark l

T a symbolic trajectory

TSi the trajectory segment connecting two consec-
utive landmarks li and li+1 of T

TP a trajectory partition of trajectory T
f a feature of trajectory

FT the concerning features of a trajectory T

f(TS) TS’s value of feature f

A. Preliminary Concepts

Definition 1 (Raw Trajectory): A trajectory T is a finite
sequence of locations sampled from the original route of a
moving object and their associated time-stamps, i.e., T =
[(p1, t1), (p2, t2), · · · , (pn, tn)].

A raw trajectory is represented as a discrete sequence of lo-
cations sampled from the continuous movement of the moving
object. However, since the sampling strategies used to generate
the trajectory data can vary significantly in different sampling
methods and sampling rates (e.g., locations could be sampled
every 100 meters, or every 5 seconds), the raw trajectory
data are not directly usable for summarization purpose, due to
the following two reasons: (1) Intuitively, despite of different
sampling strategies, different trajectories sampled from the
same route should result in the same or similar summarization.
However, trajectories generated from the same route could be
very different. For example, Fig. 2(a) demonstrates two moving
objects following highly similar routes in an urban area, but
adopting different sampling strategies. Fig. 2(b) illustrates the
actual trajectory data of these two routes stored in the database.
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It is easy to observe that the two trajectories TA and TB

are much more different than they are supposed to be. Such
limitation has already been observed by a previous work [31].
Actually, the same route could result in very different raw
trajectories under different sampling strategies, which thus
leads to undesirably different summaries and are very hard
for human to recognize. (2) The locations in trajectories are
usually described by latitudes and longitudes. However, these
physical positions can hardly give people any intuitive view
about the actual route of the moving object, and thus cannot
serve as an description in the summary.

A B

(a) trajectories in real world

A Bp1

p2 p3
(b) trajectories stored in database

Fig. 2. Example of trajectory in real world and in database

Therefore, in this paper, we propose to preprocess the raw
trajectories using semantic locations which are independent of
any raw trajectories. The following summarization is applied
on these transformed raw trajectories, and thus can give correct
summarization of the original route of the moving object,
without being affected by the chosen sampling strategy. These
semantic locations are termed as landmark.

Definition 2 (Landmark): A landmark l is a geographical
point in the space, which is stable and independent of trajec-
tories.

A landmark can be either a Point Of Interest (POI) or a
turning point of the road network. We employ our previous
research results on anchor-based trajectory calibration [31] to
rewrite the raw trajectory T into a landmark-based trajectory
T , by treating landmarks as anchor points. The trajectories so
obtained are called Symbolic Trajectories. The size |T | denotes
the number of landmarks of T .

Definition 3 (Symbolic Trajectory): A symbolic trajectory
T is a sequence of landmarks and their corresponding time-
stamps, i.e., T = [(l1, t1), (l2, t2), · · · , (lm, tm)].

Definition 4 (Trajectory Segment): An segment TSi of a
symbolic trajectory T is a sub-trajectory which connects two
consecutive landmarks li and li+1 of T .

For a given symbolic trajectory T = [l1, l2, · · · , ln], T has
|T | − 1 segments TS1, TS2, · · · , TSn−1. These segments
are the basic atoms constructing T . Two segments are named
contiguous segments if they share the same landmark as the
start and the destination respectively, i.e., TS2 and TS3

sharing landmark l3.

In the rest of the paper, the proposed summarization
method is applied to symbolic trajectories. Thus, we will use

trajectory and symbolic trajectory interchangeably whenever
the context is clear.

B. System Overview

Recall the example in Fig. 1(b). In real-life scenarios,
people usually describe their trips in the following manner: first
divide the whole route into several partitions with significant
starting (sources) and ending places (destinations); and then
use some significant events to describe the unusual behaviours
within each partition. For example, when summarizing the
route in Fig. 1(b), Beijing Shangri-la Hotel and Yuyuantan Park
are two significant POIs, which mark out a trajectory partition
of the route; along the partition, the car was driving on a high
way, and was moving 14km/h slower than usual, which are
some significant behaviors describing how the car traveled.
STMaker follows exactly the same way of how humans think
that it automatically generate a summary text for a given
trajectory in 4 steps, as shown in Fig. II-B:

1) STMaker rewrites the raw trajectory into a symbolic
trajectory.

2) STMaker conducts a partitioning to split the trajec-
tory into several non-overlapping parts. During parti-
tioning, we take consideration of multiple features
describing the trajectory. The optimization goal of
this phase is to (1) maximize the significance of
the landmarks at the two ends of each partition, (2)
maximize the information cohesion of each partition
in routing and moving features and (3) minimize the
information variance in routing and moving features
within the same partition. We will detail the parti-
tioning process in Sec. IV.

3) Given the fact that there are too many features to
describe, STMaker will choose the most significant
features within each partition according to a novel
measurement of the interestingness for each feature.
E.g., in Fig. 1(b), ‘driving on a high way’ and
‘moving 14km/h slower than usual’ are a routing
feature and a moving feature, respectively. It will be
detailed in Sec. V.

4) The selected features will be plugged into the pre-
defined phrase templates to form the summary for
each trajectory partition.

We expect that the summary of trajectory T could give people
an intuitive view about the moving behaviour embedded in T ,
which is critical to endow the dreary and elusive GPS data with
comprehensible description. Ideally, given any two trajectories,
the differences in their moving behaviours should be reflected
in their summary.

III. FEATURE EXTRACTION

In this section, we present the main features that will
be used to describe the trajectories. The features considered
in STMaker can be mainly divided into two types: routing
features (which describe where the moving object travels),
and moving features (which describe how the moving object
travels).
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Fig. 3. Framework overview

TABLE III. ROUTING FEATURES

Feature Type Example Numeric
grade of road 1 (national highway) No

road width 13 metres Yes

traffic direction 2 (one-way road) No

A. Routing Features

Routing features describe the characteristics related to
where the moving object traveled. Thus, as we focus on
trajectories collected from vehicles, the natural routing feature
is the information about the roads they travel on. For example,
with road information, we can tell whether a vehicle moves
on highway or not. More importantly, road information can
directly affect the moving patterns of the trajectories, for
example, people tend to move faster on a highway than on
a local road. In the STMaker system, we identify and use 3
kinds of road information (‘grade of road’, ‘road width’ and
‘direction’) as the routing features, shown in the Table III.
These features can be extracted from the digital map we have,
and well distinguish different kinds of roads. Notably, the value
of road width feature is numeric, while the values of grade of
road feature and traffic direction feature are categorical. We
assign different integers for the categorical features.

Grade of Road: The grade of road is the road type of a
trajectory segment TS. There are seven grades of road: 1
(highway), 2 (express road), 3 (national road), 4 (provincial
road), 5 (country road), 6 (village road) and 7 (feeder road).
The roads with higher grade (smaller numerical value) usually
have higher transportation capacity.

Road Width: The road width of a trajectory segment TS is
a important feature which can affect how popular the road is,
and how fast people can travel on the road.

Direction: The direction indicates the traffic direction of the
road. There are two values of direction, i.e., 1 (two-way
road) and 2 (one-way road). If an object moves along a one-
way road, then one of the most distinctive information of
the trajectory is ‘moving along a one-way road’, while most
trajectories move along two-way roads.

B. Moving Features

Moving features indicate how the moving object travels.
Many works [4], [41] have been devoted to extracting various
moving information from trajectories. Notably, the algorithms
extracting moving features need to be applied on the sample-
based trajectory instead of the symbolic trajectory. In our

TABLE IV. MOVING FEATURES

Feature Type Example Numeric
speed 86.2 km/h Yes

# stay points 0 Yes

# U-turns 1 Yes

system, we propose three types of moving features (‘speed’,
‘number of stay points’, and ‘number of U-turns’) to describe
the motion behaviour of a moving object. Some examples of
the moving features are presented in the Table IV.

Speed: The speed of a trajectory segment TS is one of the
most important moving features. For instance, if the speed of
TS is higher or lower than the average speed of trajectories on
the same road, the speed feature can significantly distinguish
TS from others.

Number of Stay Points: Stay points are places where the
moving object stays for a long time. The occurrence of stay
point is usually caused by traffic lights or some contingency
events, such as traffic jam, temporal parking for buying a
newspaper, etc. If the number of stay points is unusually large,
TS may have a very different moving pattern compared with
other trajectories.

Number of U-turn: A U-turn is a sharp directional change
of the moving object, which is usually abnormal compared
with other trajectories. In real life, people often make a U-turn
when they realize they are moving in wrong direction or have
missed the destination. Some U-turns may violate the traffic
rules or cause traffic hazard, therefore should be highlighted
in the summary.

It is worth noting that the above routing and moving
features are just examples to demonstrate the feasibility of
our prototype STMaker. Many other possible features can be
added into our system as required by applications, which is
discussed in Sec. VI-B.

IV. TRAJECTORY PARTITION

In this section, we introduce the trajectory partition al-
gorithm in STMaker. We first give a formal definition of a
trajectory partition as follows:

Definition 5 (Trajectory Partition): A partition of a sym-
bolic trajectory T is PT such that

• Each partition TP ∈ PT is a sub-trajectory of T
made up of contiguous trajectory segments, i.e.,

TP = [TSi, TSi+1, · · · , TSi+j ]
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• ⋃
TP∈PT

TP = T

• TP i ∩ TP j = ∅, ∀i, j.

Clearly, each segment in the symbolic trajectory is covered
by exactly one partition, and thus will be guaranteed to be
summarized exactly once in the description.

Although any partition PT of a trajectory can lead to a
summary, not all of them are suitable for a good one. First
of all, it is better for each partition to have its source and
destination well-known, or more formally, significant. For
example, the description of a partition starting from the Times
Square is more understandable to people than that starting
from the National Hockey League building, which is only 300
meters away from the Times Square. Second, it is easier
to generate more compact summaries if the trajectory
segments within the same partition are of similar features.
For instance, if the moving speed varies significantly within a
partition, it is difficult to summarize the driving behavior of
this partition using a few words.

A. Solution Overview

Different from previous trajectory partition algorithms
which partition trajectories into pieces according to time
interval, stops and etc., our partitioning is according to features
which measure the travel behaviors. Based on this intuition,
we propose a trajectory partition algorithm by leveraging the
power of Conditional Random Field (CRF). CRF is a popular
model used for image segmentation in computer vision, where
pixels in an image are assigned into several regions according
to their similarities, e.g., pixels representing sky, river or grass.
Inspired by this, we model the trajectory partition problem as
a process of labeling each trajectory segment TSi with a tag,
which satisfies the following two requirements: (1) There are
at most |T | − 1 different tags in total; (2) If two trajectory
segments are labeled with the same tag t, then all the trajectory
segments in between must be labeled by t.

We model a symbolic trajectory as an undirected graph
G(V,E), where each trajectory segment TSi is a node in V ,
and for each pair of consecutive segments TSi and TSi+1

there is an edge in E connecting their corresponding nodes.
Each TSi ∈ V is associated with an random variable Xi, de-
noting its tag. For simplicity, we assume a common state space
X for all random variables Xi, such that X = {1, · · · , |T |−1}.
On G, we define a clique system C = {Ci, i = 1, · · · , |T |},
where Ci contains two nodes TSi and TSi+1. We formally
define the CRF model on G and C as follows, which provides
a probabilistic framework for calculating the probability of the
label sequence X, i.e., [X1,X2, · · · ,X|T |], globally conditioned

on T :

Pr(X|T ) = 1

Z
exp{−

∑
C∈C

ΦC(X)}

=
1

Z
exp{−

|T |−1∑
i=1

Φ(Xi,Xi+1, TSi, TSi+1)} (1)

where Z is the normalization constant that makes the proba-

bility of all state sequences sum to one:

Z =
∑
Xi∈X

exp{−
|T |−1∑
i=1

Φ(Xi,Xi+1, TSi, TSi+1)}

In order to find the best label sequence Xopt, we need to
maximize the probability Pr(X|T ). In other words we need to
minimize the sum of Φ(Xi,Xi+1, TSi, TSi+1). In the next
subsection, we will define Φ(Xi,Xi+1, TSi, TSi+1), which
encodes the relationship between the tags Xi, Xi+1 of two
consecutive trajectory segments TSi, TSi+1.

B. Potential Function Φ(Xi,Xi+1, TSi, TSi+1)

Recall the two guidelines (in bold) of how to conduct
a good partition in Section IV. Now we translate them into
the following formal expressions: If two contiguous trajectory
partitions TSi and TSi+1 are labeled with different tags,
the significance li.s of li should be high; if two trajectory
segments TSi and TSi+1 are labeled with the same tag, the
similarity S(TSi, TSi+1), which measures the similarity of
TSi’s and TSi+1’s various features, should be high. Thus,
Φ(Xi,Xi+1, TSi, TSi+1) is defined as follows:

Φ(Xi,Xi+1, TSi, TSi+1) =

⎧⎪⎨
⎪⎩

−S(TSi, TSi+1) ,
if Xi = Xi+1

−Ca · li.s ,
if Xi �= Xi+1

(2)
where Ca is a positive constant specified by users, reflecting
the importance of the significance of li.

Landmark significance l.s is used to measure the famil-
iarity of the landmark l to average people. To measure the
familiarity of landmarks, in this work we utilize the online
check-in records from a popular location-based social network
(LBSN) and trajectories of cars in the target city, as these two
datasets are large enough to cover most areas of the city. We
leverage a HITS-like algorithm [41] to infer the significance of
landmarks, by modeling the travellers as authorities, landmarks
as hubs, and check-ins/visits as hyperlinks.

Next, we introduce the similarity measure S(TSi, TSi+1)
between two consecutive segments. Traditional trajectory sim-
ilarity/distance measures, e.g., Euclidean distance and LCSS,
directly use the latitude, longitude and time-stamp of the
raw trajectory to measure the spatial or spatial-temporal sim-
ilarity/distance between two trajectories. Instead of spatial-
temporal similarity, we will measure their similarity in travel
behaviours, i.e., features. Recall that we extract mainly two
types features about each segment, namely routing feature and
moving feature. The similarity measure S(TSi, TSi+1) will
incorporate both of them.

In order to measure the similarity of all these features of
two trajectory segments, each feature should be comparable.
Thus, we normalize each feature f of TSi to a value ranging
from 0 to 1. The normalizing constant of f is the biggest
feature value among all the trajectory segments of T . After
normalization, all the features F of a trajectory segment TSi

form a |F|-dimension vector �vi. Therefore, measuring the simi-
larity S(TSi, TSi+1) of two continuous trajectory segments is
to measure the similarity of two vectors. We employ the most
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widely used vector similarity measure–Cosine Similarity [29]
as our similarity measure. Since different people have different
interest in different features (e.g., one may have higher interest
in ‘speed’ feature), STMaker allows the user to specify the
weight of each feature, we denote the feature weight of f
by w. The bigger w is, the higher the probability for the
trajectory segments, with higher similarity of f , to fall in a
same partition. All the feature weight w forms a |F|-dimension
weight vector �w, where �wj stands for the weight of feature
fj . Using these two vectors, S(TSi, TSi+1) is defined as
following:

S(TSi, TSi+1) =
1

2
· (

|F|∑
j=1

wj · �uj · �vj√
|F|∑
j=1

wj · �u2
j ·

√
|F|∑
j=1

wj · �v2j
+1) (3)

where the �u and �v are the feature vectors of TSi and TSi+1

respectively; uj and vj are the j’s dimension of u and v
respectively. Note that S(TSi, TSi+1) ranges from 0 to 1.

C. Finding Optimal Partition

In our neighborhood system C, each variable Xi is only
directly coupled with Xi−1 and Xi+1. Therefore, the CRF
model is defined on a chain-like graph. Optimizing Equation
(1) is a maximum a posteriori probability (MAP) problem, and
thus dynamic programming (DP) can be applied to solve the
MAP.

We define the DP state as (i) which represents the score
of the potential function Φ on the first i trajectory segments.
The state transition function is defined as

(i) = min

{
(i− 1)− Ca · li.s
(i− 1)− S(TSi−1, TSi)

(4)

The initial state is that (1) = 0. The final partition result is
(|T |). The global optimal trajectory partition Xopt is used as
the default partition in STMaker.

D. Finding Optimal k-Partition

Nevertheless, different people have different requirements
of the summarization granularity. This granularity can be di-
rectly reflected in how fine-grained the trajectory is partitioned
and described. To be specific, for example in the coarsest case,
the whole trajectory is treated as a single piece, and only the
most significant features can be described in the summary;
on the contrary, in a more detailed case, the whole trajectory
can be divided into several pieces where each piece has
similar features and gets described in the summary. Therefore,
STMaker supports the user to specify their own preference of
the granularity of the summary. That is, the user specifies the
number of partitions k that the trajectory is partitioned into
and descriptions are generated about.

To solve this k-partition, similarly we define the DP state
as a pair (i, j) which represents the score of the potential
function Φ on the first i trajectory segments if the i segments
are partitioned into j partitions. The state transition function
is defined as

(i, j) = min

{
(i− 1, j − 1)− Ca · li.s
(i− 1, j)− S(TSi−1, TSi)

(5)

Algorithm 1 illustrates the main structure of our finding
optimal k-partition method. The initial state is that (1, 1) = 0
(line 3) while (1, j) = ∞ for j > 1. The initialization of state
(i, i), which represents each of the i segments is a partition,
is demonstrated by line 4 - 5. And initialization of state i, 0,
which represents all the i segments belong to a same partition,
is illustrated by line 6 - 7. The final k-partition result is (n, k)
(line 12).

Algorithm 1: Finding Optimal k-Partition

Input: Calibrated trajectory T and its segments TS, landmark
significance l.s, feature weight w, feature value
f(TS), the partition size k

Output: The best k-partition of trajectory segments
1 n ← the number of segments |T |
2 create an array E[0, ..., n− 1][0, ..., k − 1]
3 E[0][0] ← 0
4 for i = 1 ← n− 1 do
5 E[i][i] = E[i− 1][i− 1]− Ca · li.s
6 for i = 1 ← n− 1 do
7 E[i][0] = E[i− 1][0]− S(TSi−1, TSi)

8 for i = 1 ← n− 1 do
9 for j = 1 ← i− 1 do

10 E[i][j] = min{E[i− 1][j − 1]− ca · li.s,
11 E[i− 1][j]− S(TSi−1, TSi)}
12 return E[n− 1][k − 1]

V. FEATURE SELECTION

Summarizing a trajectory partition is a process of describ-
ing the key characteristics of the routing and moving features
of each partition. However, the summarization text is better to
be concise for human to digest, which obviously cannot cover
all the routing and moving features. For example, most roads
are two-way, and people usually assume an unknown road as
two-way by default. Therefore, for a trajectory partition with
all the covered roads being two-way, it is unnecessary to em-
phasize the routing feature ‘two-way’ in the summary. Hence,
a feature should be covered only if its value is different from
normal. In other words, the selected features to be covered
should be the most irregular features. By this strategy, the
generated summary is concise, representative and can easily
distinguish the given trajectory with others. In this section, we
will detail how to select features to describe a given trajectory
partition by leveraging historical trajectories.

In the following, we will discuss how to measure the
irregular rate Γf (TP ) of a feature f within a partition TP .
Only features with higher irregular rate than a user specified
threshold η will be covered in the summary.

A. Irregular Rate of Routing Features

Recall that the routing features describe where the moving
object travels. Thus the irregular rate of routing features
indicates how different the route of this particular trajectory
partition is as opposed to the most common route of historical
trajectories. Formally, given a trajectory partition TP = [TSi,
TSi+1, · · · , TSi+j−1] connecting li and li+j . We denote the
most popular historical route from li to li+j by PR. The
algorithm proposed in [7] can be used to mine PR from
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Fig. 4. Two trajectories connecting l1 and l3

Fig. 5. Trajectories connecting l1 and l3 in the road network

historical trajectories. If TP and PR are the same, there is
no need to describe the routing features in summary. On the
contrary, if TP is different from PR, the most significant
difference between TP and PR should be emphasized in
the summary. For example, in Fig. V-A the given trajectory
partition from l1 to l3 is represented by the black line and the
popular route between l1 and l3 is represented by the coloured
lines. In terms of the ‘grade of road’ dimension, the popular
route is high way whereas the given partition is not. Obviously
the ‘grade of road’ feature should be described in summary.
Thus, we need to measure the difference/irregular rate between
TP and PR in each routing feature dimension.

Given a trajectory partition TP , we define its
normalized feature sequence FTP of routing feature f as

[norm(f(TSi)), norm(f(TSi+1)), · · · , norm(f(TSi+j−1))]
where norm(·) returns the value of · normalized by the biggest
feature value in the feature sequence. Measuring the irregular
rate of TP in routing feature f can be transformed to measure
the distance between FTP and FPR, for which we design a
edit-distance-like algorithm to measure.

d(FTP , FPR) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

length(FTP ), if FPR is empty
length(FPR), if FTP is empty
min{d(rest(FTP ), rest(FPR))+

cost(head(FTP ), head(FPR)),
d(rest(FTP ), FPR) + 1,
d(FTP , rest(FPR)) + 1}, otherwise

where rest(·) returns that tail part of a feature value sequence
which consists of all but the first feature value, whereas
head(·) returns the first feature value. For numerical routing
feature f ,

cost(head(FTP ), head(FPR)) = |head(FTP )− head(FPR)|
(6)

whereas for categorical routing feature f ,

cost(head(FTP ), head(FPR)) =

{
1, if head(FTP ) �= head(FPR)
0, otherwise

(7)

Finally, the irregular rate

Γf (TP ) =
wf · d(FTP , FPR)

max(length(FTP ), length(FPR))

where wf is the user-specified feature weight.

B. Irregular Rate of Moving Features

Moving features indicate how the moving object travels.
The moving pattern of a certain road is usually stable. For
example, moving objects on a high way usually travels fast
with no stops. Thus, if a moving object travels on the same
high with several stops, it is unusual and it should be described
in summary. Therefore a moving feature f ’s irregular rate
should measure the difference between the travel patterns
between each segment of the trajectory partition and that of the
historical trajectories. For example, in Fig. 4, the solid line’s
speed-irregular-rate is derived on the basis of the differences
between the travel pattern of the target trajectory and that of
other trajectories ( e.g., the dotted line) moving along the solid
line, measured for the two segments respectively, viz. l1 to l2
and l2 to l3.

In order to measure the irregular rate of a moving feature
on a trajectory partition, we first need to find out the feature’s
regular value on that partition. To this end, we extract the
regular features values from the historical trajectories. For
each moving feature f , a historical feature map, represented
as a directed graph G(V,E), is built to summarize feature
f between two landmarks. Given a landmark set, a historical
symbolic trajectory dataset and a certain moving object feature
f , we can construct the historical feature map in the following
steps:

1) Add each landmark in the landmark set to the vertex
set V of the historical feature map.

2) Add a directed edge from li to lj , denoted by e(li, lj),
if there exists a trajectory T in the historical symbolic
trajectory dataset travelling from li to lj directly. We
denote such a trajectory by T (li → lj).

3) Annotate each edge e(li, lj) with the average value
of feature f of T (li → lj) denoted by rli→lj , e.g.,
the average sudden stop times between li and lj and
the average speed between li and lj .

With the historical feature map, we can measure the
irregular rate of f of a given trajectory partition TP by the
following equation:

Γf (TP ) = wf ·

i+j−1∑
t=i

|norm(f(TSt))− norm(rlt→lt+1
)|

|TP |
where wf is the user-specified feature weight; norm(·) returns
the normalized value of · and the normalization constant is
the biggest feature value among all segments of the partition;
rlt→lt+1 is the ordinary value of f of TSt, which can be easily
computed from the historical feature map.

VI. DISCUSSION

A. Summary Construction

Even with meaningful features selected, presenting them in
their original numeric values is still hard to interpret by the the
users, For example, given a summary saying that the average
speed of the given trajectory partition is 70 km/h, the users can
hardly tell whether the vehicle is fast or slow, e.g., moving in
70 km/h is pretty fast on a local road, whereas it is quite slow
on a highway. Therefore, the final step in summarization is
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TABLE V. TEMPLATE EXAMPLES

Feature Template
Grade of road through given road type (road name) while the most drivers choose regular road type (road name)

Road width through given road width metres wide road while most drivers prefer wider/narrower roads

Traffic direction through given traffic direction while most drivers prefer regular traffic direction
speed with the speed of given speed km/h which was |given speed - regular speed| km/h faster/slower than usual

# stay points with given # stay points stay points (in total for about time duration)

# U-turns with conducting # U-turns U-Turns at places of U-turns

TABLE VI. TEMPLATE EXAMPLES

Template
The car moved/started from source to destination through road type, with feature
template
Then it moved from source to destination through road type, with feature
template
Then it moved from source to destination smoothly.

to provide interpretable descriptions for the selected features.
We define a set of phrase templates for each feature, some of
which are exemplified in Table V.

In the templates, all the italics need to be replaced with the
actual values of the selected features. For categorical features,
the feature values are presented with the actual semantic
meaning, e.g., ‘highway’ or ‘express road’ for the ‘grade of
road’ feature, rather than the meaningless numbers, ‘1’ or ‘2’.
For the numeric features, we further provide several intuitive
descriptors (in bold font) by comparing the actual feature
value with the feature’s average/regular value. As an example,
the irregular ‘speed’ feature can be either faster or slower
than the average speed value. Besides, feature extraction can
also produce by-products, which could be very useful in the
templates. For example, extracting the ‘# of stay points’ feature
will also provide where the stay points take place and how
long the moving object stays. Both of them can be presented
in template to enrich the summary.

In order to make the summarization more fluent, we also
define several sentence templates, shown in Table VI, such as
‘The car moved from source to destination through road type,
with feature template. Landmarks and selected features can be
embedded into these templates to generate the final summaries
text.

B. Extension with New Features

In real-life application, users could easily add new features
into STMaker by desire. A new feature f∗ can be added with
the following steps: The first step is to define the type of
feature f∗, i.e., whether f∗ is a routing feature or a moving
feature, a numerical feature or a categorical feature. If f∗ is a
categorical feature, we define consecutive integers to represent
the categories of f∗. The second step is to collect regular value
of f∗. If f∗ is a routing feature, the regular value of f∗ on
each road needed be collected from third-party sources, such
as digital map; if f∗ is a moving feature, a historical feature
map of f∗ need to be built with the techniques discussed in
Sec. V-B. The third step is to create feature template for f∗,
following the rules introduced in Sec. VI-A.

C. Text Processing

The research on text processing is very mature compared
with trajectory processing. After summarizing the trajectories

using text, many text processing techniques, e.g., text indexing,
text clustering and text categorization, can be directly applied
on the summaries. For example, applying the text clustering
method on summaries of all the trajectories in a certain region
at a specific time period, we can have a quick overview about
the traffic condition.

VII. EXPERIMENT

In this section, we conduct extensive experiments to
validate the effectiveness of our partition-and-summarization
framework. Our system is implemented in Java. All the exper-
iments are run on a computer with Intel Core i7-2600 CPU
(3.40GHz) and 8 GB memory.

A. Experiment Setup

Commercial Map: We use the commercial map of a large
city—Beijing—provided by a collaborating company. The
commercial map is used to build the landmark dataset, and to
provide routing features which are essential for our algorithm
(Section III-A and V-A).

Landmark Dataset: The landmark dataset consists of two
parts: the turning point dataset extracted from the commercial
map, and the POI dataset of Beijing provided by a reliable
third-part company. We extract about 32,000 turning points
from the commercial map. The raw POI dataset has about
510,000 POI points. We cluster the raw POI dataset into
approximately 17,000 clusters using DBSCAN [12], and use
the geometric centers of the clusters as the landmarks.

Trajectory Dataset: We use a real-world trajectory dataset
generated by 33,000+ taxis in Beijing over three months.
This dataset has more than 100,000 trajectories. We randomly
split the dataset into two parts: a training dataset of 50,000
trajectories, and the rest trajectories as a testing dataset. The
training dataset is used to mine popular routes between the
landmarks, and to build the historical feature map. The testing
dataset is used to test the effectiveness of our framework. In
the following, we refer to the summarization results of the
testing dataset as the summary dataset. Thus, there are about
50,000 summaries in summary dataset.

B. Evaluation Approach

We study both the effectiveness and efficiency of our
partition-and-summarization framework. In all our algorithms,
we set the weight of the landmark significance in the potential
function as 0.5, the feature weight as 1 and the irregular rate
threshold for a selected feature as 0.2.

We use 6 features in the experiments. including GR, RW,
TD, Spe, Stay and U-turn, which represent grade of road,
road width, traffic direction, speed, # stay points and # U-turn
respectively. To study the effectiveness, we study the following
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Fig. 7. User interface of STMaker

4 aspects of the summarization: (1) whether the summary can
reflect the changing of environments, e.g., time, (2) whether the
landmarks mentioned by summaries are significant, (3) the im-
pact of feature weight and partition size to our summarization
framework, and (4) feedback from volunteers about whether
the summary helps understanding of the trajectory. As to the
efficiency test, we record the time cost for a single trajectory
summarization by varying partition size k and the size of the
trajectory.

C. Performance Evaluation

1) Case Study: Before conducting the quantitative perfor-
mance evaluation, we show a case study of our summarization
system in Fig. 6, which shows one trajectory’s different sum-
maries of different granularities. Fig. 6(a) shows the k = 1
summary of the trajectory that it has two stay points in the
whole trajectory. Fig. 6(b) illustrates the k = 2 summary by
dividing the trajectory into two partitions and specifies that two
stay points exist in the first part and a U-turn occurs in the
second part. Fig. 6(c) demonstrates the finest grained summary
(k = 3) of the trajectory. Besides the information given
by k = 2 summary, another significant landmark (Suzhou
Road) is highlighted in the summary. We can see that more
detailed information is shown with the growing of k. Also the
summaries given by our system can well describe the routes
as well as the moving patterns of the trajectories, which one
may hardly tell directly from the map.

The user interface of STMaker is demonstrated in Figure. 7.
At the lower right corner of the figure is the raw trajectory data
and at the upper right corner is the summary of the trajectory.
From the figure we can see that the raw trajectory is text-heavy
and hard to understand while the summary gives an intuitive
view of where and how the moving object travels. Also the
data volume of the raw trajectory is big while the summary is
more compact.

2) Effectiveness of Trajectory Summarization: Summaries
at Different Time. The trajectories during different time of
the day could be very different. For example, most trajectories
during the rush hours move at low speed and have more stay
points than usual. Thus, the summarization should reflect such
temporal differences of trajectories. In this experiment, we
evaluate how the summary contents change with time. We
divide the 24 hours of the day into 12 categories, each spanning

over a two-hour interval. Trajectories are classified into these
12 categories according to the time of their generation. For
example, a trajectory generated at 5:00 pm belongs to the
category of 16:00 - 18:00. We analyze the summarization by
studying how the feature frequencies FF of various features
change in the summaries of each category. The feature fre-
quency FFf of a feature f is defined as follows:

FFf =
# summaries contaning f

# total summaries

The higher FFf is, the more number of trajectories have
irregular value on f . Notably, the weather of the eleven days is
mostly sunny or cloudy, and thus most of the trajectories were
collected under the similar weather. Fig. 8 shows the results of
FF of all the six features we considered in our experiments.

As shown, all the features have a conspicuously higher
FF during daytime (6:00 - 18:00) than those at night (18:00
- 6:00 (next day)), especially for the features: road width
and speed. This contrast in the summaries clearly reflects
the reported fact of heavier traffic during the daytime. If we
compare the summaries during the daytime, the speed feature
has a significantly higher FF in categories 6:00 - 8:00, 8:00
- 10:00, 16:00 - 18:00 and 18:00 - 20:00, which tells that
more vehicles have irregular speed during these eight hours.
The reason for the phenomena is that during these hours the
traffic is always heavy since people need to go to work or go
back home. Therefore the driving speed is slower than usual.
Similar phenomena occur in relation to the features of grade
of road, number of stay points and number of U-Turns. This
observation agrees with our common sense that the traffic in
daytime is very different from that at night. Also, observation
consents to our common sense that the traffic during rush hours
is very different from that during other time of the day. It
verifies our expectation that our summarization framework can
well reflect the change of traffic with time.

3) Effectiveness of Landmark Selection: Ideally, the start-
ing point and destination of every trajectory partition should
be of high significance, so that users can get a better idea of
the trajectory. Thus, we study whether the landmarks picked
in our partition step have high significance. We sort all the
landmarks of the given trajectory in descending order by the
landmark significance, and group them into 10 groups, i.e., top
0−10%, top 10%-20%, · · · landmark significance groups. For
each group of landmarks, we analyze their usage frequency in
the summary dataset. The usage frequencies are presented in
Fig. 9. As shown, the usage frequency versus the landmark
significance follows a long-tail distribution. Specifically, the
landmarks in top-10%-high-significance group appear about
40% in the summary dataset, which is almost half of all the
landmarks used in the summarization. Moreover, nearly 60%
of the landmarks used are very popular landmarks, i.e. among
the 30% groups. It proves that the landmarks we used in
summaries are mostly well known to users.

4) Effect of Feature Weight and Partition Size k: In this
section, we test how the feature weight w and the partition size
k affects our trajectory summarization algorithm. Firstly, recall
that a higher feature weight of feature f results in (1) trajectory
segments with higher similarity of f have higher probability
to be in a same partition; (2) feature f has higher probability
to be selected in the summary. In order to verify the effect
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(a) The car started from the Daoxiang
Community to the Haidian Hospital
with two staying points (in total for 167
seconds).

(b) The car started from the Daoxiang Com-
munity to the Suzhoujie Station with two
staying points (in total for 167 seconds).
Then it moved from the Suzhoujie Station
to the Haidian Hospital with conducting one
U-turn at Zhichun Road.

(c) The car started from the Daoxiang Com-
munity to the Suzhou Road with two staying
points (in total for 167 seconds). Then it
moved from the Suzhou Road to the Suzhou-
jie Station smoothly. Then it moved from
the Suzhoujie Station to the Haidian Hos-
pital with conducting one U-turn at Zhichun
Road.

Fig. 6. Example of trajectory summarizations

Fig. 8. Features’ FF of different time

Fig. 9. usage frequency of landmark groups

of w, we conduct a controlled study by tuning w of the Spe
feature from 0.5 to 4, while keeping w of all the other features
to be default value, and summarizing randomly selected 1000
trajectories using these different weights. Fig. 10(a) shows how
the eight features’ FF vary with the different weights of the
Spe feature. As shown in the figure, FF of the Spe feature
increases gradually when the weight increases, which conforms
to our expectation.

To explore the impact of partition size k, we run our sum-
marization algorithm on 1000 randomly selected trajectories by
varying k from 1 to 7, and analyze how the FF of each feature
changes with k. The result is shown in Fig. 10(b). We can see
that as k increases, the FF of routing features (GR, RW and
TD) decrease while those of moving features (Spe, Stay, U-turn
and SpeC) increase. The reason is that the larger a partition is,
the more probable it is that the moving path is different from

(a) effect of feature weight (b) effect of partition size

Fig. 10. Effect of parameters in trajectory summarization

the most popular route, which in turn increases the irregular
rate of routing features. Moreover, irregular moving features
of the partial partition may not be significant enough for a
long partition, and thus the longer the partition is, the fewer
moving features are described.

5) Impressions of Users: The primary goal of trajectory
summarization is to give users an intuitive view of where and
how the moving object traveled. Therefore, in this experiment
we test whether the users can have an intuitive view after
reading the summaries. Since users’ understanding is hard
to quantify exactly, we propose to use four understanding
levels to assess how well a user understands a trajectory after
reading a summary: (1) has no idea of the trajectory; (2) has
a little idea of where or how the moving object traveled;
(3) has idea of where and how the moving object traveled
but the summary should be improved by giving more/less
information, improving the summary sentence or some other
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methods; (4) knows clearly where and how the moving object
traveled, and the summary is well presented. We randomly
select 450 summaries and ask thirty volunteer users to read
fifteen summaries each. Then we ask each user to classify
her understanding of the trajectory into one of the four levels.
Fig. 11 shows the understanding level of the users. We can
see that nearly 55% of randomly selected 450 summaries are
marked at grade 4, and nearly 80% (grade 3 and 4) summaries
can give users an intuitive view of the raw trajectories. This
implies that the proposed trajectory summarization algorithms
can achieve its primary goal.

Fig. 11. User feedback

6) Summarization Time Cost: We also evaluate the time
cost of our trajectory summarization algorithm, which is espe-
cially important for online summarization systems. The time
cost mainly depends on the size |T | of the given trajectory
T and the value of partition size k. Thus we tune |T | and k,
and record the average time cost for summarizing a single
trajectory. The result is shown in Fig. 12, from which we
observe that most trajectories can be summarized within tens
of milliseconds. With the increasing of |T | and k, the time
cost increase slightly.

(a) Effects of |T | (b) Effects of k

Fig. 12. Average time cost for summarizing one trajectory

VIII. RELATED WORK

The existing trajectory summarization works focused on
how to find the most representative trajectory out of a set of
trajectories. To the best of our knowledge, none of them studied
using text to summarize a single trajectory. However, there
are several works on summarization of text, audio and video,
which share similar inspiration with our work. In this section,
we review these existing trajectory summarization works, and
the works on summarization of text, audio and video. We
also review existing works on trajectory segmentation and
trajectory annotation which are related to our partition-and-
summarization framework.

Trajectory Summarization. Given a set of trajectories, [13]
proposed a solution to cluster the trajectories into several
groups, and represent each group by its most central trajectory.
[1] summarized a set of trajectories by providing a symbolic
route to represent the cardinal trajectory directions.

Text Summarization. Many works have been devoted to text
summarization. [39] used Support Vector Machine to find
a summary sentence in a document. However, this work is
limited in that it did not leverage the relation between the
sentences. [9], [21] took a different approach and made use of
the relations between sentences. [28] used Conditional Random
Field to partition a document and identify the summarization
sentences.

Multimedia Summarization. The large amount of multimedia
data available on the Internet is making audio/video sum-
marization increasingly important. [8] exploited information
retrieval techniques to summarize audio by extracting salient
words from the audio. [18], [22] took a different approach
which extracts non-textual features such as ‘noteworthy ut-
terances’ instead of text features. [33] extracted keyframes
from a video as the summarization. [18] exploited both audio
and video information, and proposed the maximal marginal
relevance algorithm for video summarization. [11] studied how
to use natural language to summarize video, which focused on
how to extract human actions from video.

Trajectory Segmentation. A few works have been conducted
on trajectory segmentation. [37] proposed a method to seg-
ment heterogeneous trajectories into several parts according
to different means of transportation, e.g., by bike and by car.
This trajectory segmentation method can hardly be applied on
a trajectory generated by the same transportation.

Trajectory Annotation. Dedicated algorithms are indepen-
dently designed for trajectory annotations with geographic re-
gions or lines. Regarding trajectory annotation with geographic
regions, studies [30], [23] focused on computing topological
correlations (called spatial predicates) between trajectories
and regions. Regarding trajectory annotation with geographic
lines, many works [2], [36], [24], [20] have been focusing
on identifying the correct road segment on which a vehicle
is traveling, . [2] used only geometric information of the
underlying road network and apply distance measurements to
generate line annotation. [36] accounted for the connectivity
and contiguity of the road networks, rather than only the
geometric distances. [24], [20] studied generating annotations
for low-sampling-rate trajectories.

IX. CONCLUSIONS

In this paper we have taken an important step towards
making sense of trajectory data by automatically generating
a summaries text for individual trajectory. A partition-and-
summarization framework has been proposed, which splits a
trajectory into several partitions with similar travel behaviour
and generates summarization to describe the most significant
features for each partition. We conducted extensive experi-
ments on a real-life trajectory dataset. The experiment results
show that our summarization framework can reflect the most
representative features of the trajectories. We expect this work
will trigger several interesting open problems in this direction,
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such as summarization of trajectory group, semantic queries
on trajectory summarization, etc.
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[6] L. Chen, M. Özsu, and V. Oria. Robust and fast similarity search for
moving object trajectories. In SIGMOD, pages 491–502, 2005.

[7] Z. Chen, H. Shen, and X. Zhou. Discovering popular routes from
trajectories. In ICDE, pages 900–911, 2011.

[8] H. Chiori and S. Furui. Speech summarization: an approach through
word extraction and a method for evaluation. IEICE TRANSACTIONS
on Information and Systems, 87(1):15–25, 2004.

[9] J. M. Conroy and D. P. O’leary. Text summarization via hidden markov
models. In Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
406–407. ACM, 2001.

[10] P. Cudre-Mauroux, E. Wu, and S. Madden. Trajstore: An adaptive
storage system for very large trajectory data sets. In ICDE, pages 109–
120, 2010.

[11] D. Ding, F. Metze, S. Rawat, P. F. Schulam, S. Burger, E. Younessian,
L. Bao, M. G. Christel, and A. Hauptmann. Beyond audio and video
retrieval: towards multimedia summarization. In Proceedings of the 2nd
ACM International Conference on Multimedia Retrieval, page 2. ACM,
2012.

[12] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD,
pages 226–231, 1996.

[13] M. R. Evans, D. Oliver, S. Shekhar, and F. Harvey. Summarizing
trajectories into k-primary corridors: a summary of results. In Proceed-
ings of the 20th International Conference on Advances in Geographic
Information Systems, pages 454–457. ACM, 2012.

[14] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis. Nearest
neighbor search on moving object trajectories. In SSTD, pages 328–345,
2005.

[15] H. Jeung, H. Shen, and X. Zhou. Convoy queries in spatio-temporal
databases. In ICDE, pages 1457–1459, 2008.

[16] H. Jeung, M. Yiu, X. Zhou, C. Jensen, and H. Shen. Discovery of
convoys in trajectory databases. In PVLDB, volume 1, pages 1068–
1080. VLDB Endowment, 2008.

[17] J. Lee, J. Han, and K. Whang. Trajectory clustering: a partition-and-
group framework. In SIGMOD, pages 593–604. ACM, 2007.

[18] Y. Li and B. Merialdo. Multi-video summarization based on av-mmr.
In Content-Based Multimedia Indexing (CBMI), 2010 International
Workshop on, pages 1–6. IEEE, 2010.

[19] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal
moving object clusters. In PVLDB, volume 3, pages 723–734, 2010.

[20] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-
matching for low-sampling-rate gps trajectories. In Proceedings of
the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 352–361. ACM, 2009.

[21] R. Mihalcea. Language independent extractive summarization. In
Proceedings of the ACL 2005 on Interactive poster and demonstration
sessions, pages 49–52. Association for Computational Linguistics, 2005.

[22] A. Nenkova. Summarization evaluation for text and speech: issues and
approaches. In INTERSPEECH, 2006.

[23] M. E. Nergiz, M. Atzori, and Y. Saygin. Towards trajectory anonymiza-
tion: a generalization-based approach. In Proceedings of the SIGSPA-
TIAL ACM GIS 2008 International Workshop on Security and Privacy
in GIS and LBS, pages 52–61. ACM, 2008.

[24] P. Newson and J. Krumm. Hidden markov map matching through noise
and sparseness. In Proceedings of the 17th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems,
pages 336–343. ACM, 2009.

[25] J. Ni and C. Ravishankar. Indexing spatio-temporal trajectories with
efficient polynomial approximations. TKDE, 19(5):663–678, 2007.

[26] D. Pfoser, C. Jensen, and Y. Theodoridis. Novel approaches to the
indexing of moving object trajectories. In VLDB, pages 395–406, 2000.
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