
Towards Efficient Search for Activity Trajectories

Kai Zheng 1, Shuo Shang 2, Nicholas Jing Yuan 3, Yi Yang 4

1 School of Information Technology and Electrical Engineering,

The University of Queensland, Brisbane, Australia
kevinz@itee.uq.edu.au

2 Department of Computer Science, Aalborg University, Denmark
sshang@cs.aau.dk

3 Microsoft Research Asia, Beijing, China
nichy@microsoft.com

4 School of Computer Science, Carnegie Mellon University, PA, USA
yiyang@cs.cmu.edu

Abstract—The advances in location positioning and wireless
communication technologies have led to a myriad of spatial
trajectories representing the mobility of a variety of moving
objects. While processing trajectory data with the focus of
spatio-temporal features has been widely studied in the last
decade, recent proliferation in location-based web applications
(e.g., Foursquare, Facebook) has given rise to large amounts of
trajectories associated with activity information, called activity
trajectory. In this paper, we study the problem of efficient simi-
larity search on activity trajectory database. Given a sequence of
query locations, each associated with a set of desired activities, an
activity trajectory similarity query (ATSQ) returns k trajectories
that cover the query activities and yield the shortest minimum
match distance. An order-sensitive activity trajectory similarity
query (OATSQ) is also proposed to take into account the order
of the query locations. To process the queries efficiently, we
firstly develop a novel hybrid grid index, GAT, to organize the
trajectory segments and activities hierarchically, which enables
us to prune the search space by location proximity and activity
containment simultaneously. In addition, we propose algorithms
for efficient computation of the minimum match distance and
minimum order-sensitive match distance, respectively. The results
of our extensive empirical studies based on real online check-in
datasets demonstrate that our proposed index and methods are
capable of achieving superior performance and good scalability.

I. INTRODUCTION

Driven by major advances in sensor technology, GPS-

enabled mobile devices and wireless communication, a large

amount of data describing the motion history of moving

objects, known as trajectory, are currently generated and

managed in scores of application domains. This inspires

tremendous efforts made on analyzing large scale trajectory

data from a variety of aspects in the last decade. Represen-

tative work includes designing effective trajectory indexing

structures [1][2][3][4][5], efficient trajectory query process-

ing [6][7][8], uncertainty management [9][10], and mining

knowledge/patterns from trajectories [11][12][13][14][15], to

name a few.

In spite of the significant contributions made by those

work, they mainly focus on the spatio-temporal features of the

trajectories. Typically, a trajectory is modelled as a sequence

of time-stamped geo-locations in two or three dimensional

space, which means spatio-temporal information is essential

to a trajectory database. However, recent years have witnessed

the flourish of location-based web applications such as online

check-in services (e.g., Foursquare1), location or route sharing

(e.g., Facebook Place2, Bikely3) and geo-tagged media sharing

(e.g., Flickr4). These applications are redefining and enriching

the traditional trajectory databases by associating locations

with semantic meanings. For example, Foursquare users can

check in the venues they are visiting and leave tips for other

people. Flickr allows tourists to upload their geo-tagged photos

took by smartphones during the travel, so that their trips can be

outlined by the time and location information embedded in the

photos. From the trajectories generated in these applications,

we can know not only where and when a user has been,

as in the traditional trajectory database, but also what he/she

has done by extracting the information from the multimedia

contents attached to the locations (e.g., text, images, videos).

In this paper, we use the term activity trajectory to represent

this new type of trajectory data that contains the information

about the user activities at particular places. Tr1 and Tr2
in Figure 1 exemplify the activity trajectories, where each

place is associated with a set (could be empty) of activities

performed by the users. Notice that how to extract and classify

the activities is orthogonal to the techniques in our paper,

and we just regard each activity as a unique entry of a

pre-defined activity vocabulary. Since the activity trajectories

are becoming ubiquitous and still growing in a fast pace,

analyzing them is undoubtedly an important problem which

will lead to many interesting findings. Towards this direction,

we study the problem of efficient similarity search in large

scale activity trajectories. Similarity search has been studied

for long in trajectory databases due to its broad range of

real applications. Consequently, a great number of research

results exists including different similarity/distance measures

and search techniques [16][17][18][6][7][19][20]. But none of

these methods can be applied to activity trajectories, as the

1http://www.foursquare.com
2http://www.facebook.com
3http://www.bikely.com
4http://www.flickr.com

978-1-4673-4910-9/13/$31.00 © 2013 IEEE ICDE Conference 2013230

activities must be considered in both distance measures and

search process.

�����������

�����������

����	����

���������	�

�����������	�

�����������	�

����	����	

���������	�

���������	�

�����������	�

���������	�

���������	

������	����	�

�
�

�
�

��

�	�
�	�
�	�
�	

�	�

��
��

� � �
 �
 ��

�

 � �� ��

�� �� �� � �

��

�	�
�	�
�	�
�	

�	�

��
��

 � �� �
 ��

�
 ��
 �� ��

�� �� �
 � �

���������������

���������������

Fig. 1: Similarity query example

Identifying the similar activity trajectories to a given query

is very useful for place recommendation and trip planning.

Consider the example in Figure 1 where a tourist plans to

visit three places q1, q2, q3 in a city and conduct activities

{a, b}, {c, d}, {e}, respectively. Because he is not familiar with

this city, he would like to look at the travelling histories

of other people nearby his intended locations for reference.

If only the geometric property of the trajectories is to be

considered, we can apply the best match distance measure

proposed by Chen et al [20], which aims at searching for

similar trajectories with respect to multiple query locations.

By doing so, Tr1 will be taken as the most promising result

since its points p1,1, p1,3, p1,5 are closer to the query points

than Tr2. But obviously the tourist will not be satisfied by this

result since p1,1, p1,3 do not cover his intended activities. On

the other hand, Tr2 can be a better reference for the tourist as

it has the points around each query location while matching

the activities (p2,1, p2,2 for q1, p2,3 for q2, p2,5 for q3), though

it is a bit further than Tr1 from pure geographical aspect.

Having observed the limitation of traditional trajectory

similarity search, we propose a novel similarity query for

activity trajectories by incorporating both geometric distance

and activity match into the similarity measure, with the goal

of returning more meaningful results to the users. However,

answering this new query turns to be a more challenging

problem since just making use of either location or activity

information for pruning the search space will result in bad

query performance. Our approach to this problem starts with

a novel grid index called GAT, which includes a hierarchy of

cells for each activity, an inverted list of trajectories containing

each activity within each cell, and a summarized sketch of

activities for each trajectory. GAT keeps the advantage of

hierarchical spatial index like R-tree [21] while avoiding the

flaws of large “dead zones” when indexing trajectories by

minimum bounding boxes. In addition, the index not only

uses the local information on trajectory segments within the

cells but also preserves some global information for the

entire trajectory in the activity sketch, so that its pruning

power can be boosted. On top of the index, we develop a

best-first search strategy with tighter distance lower bound

for all “unseen” trajectories in the database and an efficient

algorithm to compute the distance between candidates and the

query. Furthermore we extend the similarity query to be“order-

sensitive” by taking into account the order of the query points,

and propose efficient solutions to rule out invalid candidates

and evaluate the more costly distance function. To sum up, we

make the following major contributions in this paper.

• We introduce and formalize two new types of similarity

queries for activity trajectories.

• We propose a novel grid indexing structure called GAT

to organize the trajectory segments and their activity

information in a hierarchical manner. On top of that, we

develop a best-first search framework, which consists of

candidate retrieval and validation procedures, to prune

a large number of disqualifying trajectories by spatial

proximity and activity containment simultaneously.

• We also develop efficient algorithms to compute the min-

imum (order-sensitive) match distance between a query

and a candidate trajectory.

• We conduct an extensive experimental study based on

real trajectory datasets, which includes performance com-

parisons with three baseline algorithms and memory

cost evaluation on the proposed index. The experimental

results demonstrate the efficiency and scalability of our

proposed solution.

The remainder of the paper is organized as follows. We

define the necessary concepts and formulate the similarity

query in Section II. Section III presents the baseline meth-

ods. Proposed indexing structure and solution for ATSQ are

discussed in Section V. Section VI defines the OATSQ and

describes our approach. Section VII reports the experimental

observations, followed by a brief review of related work in

Section VIII. Section IX concludes the paper.

II. PROBLEM STATEMENT

In this section, we give the problem statement and provide

necessary definitions and background. Table I summarizes the

notations used throughout the paper.

Definition 1 (Activity): An activity α represents a type of

action that a user can take at some place of interest such

as sport, dining and entertaining. We use A to denote the

pre-defined activity vocabulary, which is the union of all the

activities the can be performed by the users.

Definition 2 (Activity Trajectory): An activity trajectory Tr

is defined as a sequence of geo-spatial points associated with

activities, i.e., Tr = (p1, p2, ..., pn). Each pi represents a geo-

spatial location, which is attached with a (possibly empty) set

of activities Φ ⊆ A.

Essentially, an activity trajectory is historical record describ-

ing what a user did and where he/she did it. In the rest of

the paper, we will simply use trajectory to represent activity

trajectory when no ambiguity can be caused.

Definition 3 (Point Match): Given a query point q with a

set of activities q.Φ, a point match from Tr to q, denoted by

Tr.PM(q), is a set of points P ⊆ Tr such that its union

of activities is a superset of q.Φi, i.e., q.Φ ⊆
⋃

pi∈P pi.Φ.

231

TABLE I: Summary of notations

Notation Definition

Tr Activity trajectory

α An activity

p A point in trajectory

p.Φ The set of activities attached to p

Tr[i, j] Sub-trajectory of Tr from pi to pj
Q A set of query locations

q A query location in Q

Tr.PM(q) A point match from Tr to q

Tr.MPM(q) The minimum point match from Tr to q

Tr.M(Q) A match from Tr to Q

Tr.MM(Q) The minimum match from Tr to Q

Tr.OM(Q) An order-sensitive match from Tr to Q

Tr.MOM(Q) The minimum order-sensitive match from Tr
to Q

Dpm(q, T r.PM(q)) Point match distance from Tr.PM(q) to q

Dmpm(q, T r) The minimum point match distance from Tr
to q

Dm(Q,Tr.M(Q)) The match distance from Tr.M(Q) to Q

Dmm(Q,Tr) The minimum match distance from Tr to Q

Dom(Q,Tr.M(Q)) The order-sensitive match distance from
Tr.OM(Q) to Q

Dmom(Q,Tr) The minimum order-sensitive match distance
from Tr to Q

The sum distance between each point in Tr.PM(q) and q,

i.e., Dpm(q, Tr.PM(q)) =
∑

p∈Tr.PM(q) d(p, q), is called the

point match distance.

Obviously, there may be none or multiple point matches

in Tr for a given query point. So we define the concept of

minimum point match.

Definition 4 (Minimum Point Match): Given a query point

q and a trajectory Tr, a point match Tr.PM(q) (if

exists) is called the minimum point match, denoted as

Tr.MPM(q), if for any other point match Tr.PM(q)′,
we have Dpm(q, Tr.PM(q)) ≤ Dpm(q, Tr.PM(q)′).
Dpm(q, Tr.PM(q)) is called the minimum point match dis-

tance between Tr and q, denoted as Dmpm(q, Tr).
Considering the example in Figure 1, any point set in Tr1

that is the superset of any of the four point sets, namely

{p1,1, p1,2}, {p1,1, p1,4}, {p1,2, p1,5}, {p1,4, p1,5}, is a point

match from Tr1 to q2. With the distance matrix shown in the

figure, {p1,1, p1,2} is the minimum point match.

Intuitively, the minimum point match is the set of points in

the trajectory that collectively meet the activity requirement

and have the closest distance to the query point. Next we

extend this concept to multiple query points.

Definition 5 (Match): Given a set of query locations Q :
(q1, q2, ..., qm), we say a trajectory Tr is a match to Q,

denoted as Tr.M(Q), if the point match exists for each

query point qi ∈ Q. The set of point matches for each

query point forms the match from Tr to Q. Besides, the sum

of point match distances is called the match distance, i.e.,

Dm(Q, Tr.M(Q)) =
∑

q∈Q Dpm(q, Tr.PM(q)).
Definition 6 (Minimum Match): Given a set of query lo-

cations Q and a trajectory Tr, a match Tr.M(Q) is

called the minimum match, denoted as Tr.MM(Q), if for

any other match Tr.M(Q)′ we have Dm(Q, Tr.M(Q)) ≤
Dm(Q, Tr.M(Q)′). Dm(Q, Tr.M(Q)) is called the minimum

match distance between Q and Tr, denoted as Dmm(Q,Tr).
Continuing the above example, we can get that the minimum

match from Tr1 to Q is {{p1,2, p1,3}, {p1,1, p1,2}, {p1,5}},
and Tr2.MM(Q) = {{p2,1, p2,2}, {p2,3}, {p2,4}}. By this

way, Tr2 is considered to be more similar to the query

than Tr1 based on the their minimum match distances. The

following lemma states the relationship between the minimum

point match and minimum match.

Lemma 1: Given a query Q and a trajectory Tr, the

minimum match Tr.MM(Q) is formed by the mini-

mum point match for each query point qi ∈ Q, i.e.,

{Tr.MPM(q1), T r.MPM(q2), ...}. The minimum match

distance is the sum of minimum point match distance, i.e.,

Dmm(Q,Tr) =
∑

qi∈Q Dmpm(qi, T r).
The proof is omitted due to the space limit. According to

this lemma, finding the minimum match for a query Q can

be decomposed into looking for the minimum point match for

each point in Q.

Activity Trajectory Similarity Query (ATSQ). Given an

activity trajectory set D, a query Q, a positive integer k, an

Activity Trajectory Similarity Query (ATSQ) returns k distinct

trajectories from D that have the smallest minimum match

distances with respect to Q.

Ideally, the ATSQ will return the trajectories that contain

the query activities at the places close to each query location.

Here to offer some degree of flexibility, the order of the query

locations is not considered. But we will extend the query

definition to be order-sensitive in Section VI which, as we

shall see later, makes the query processing more complicated

since the Lemma 1 will not hold.

III. BASELINE ALGORITHMS

No baseline method exists for the ATSQ. In this section, we

propose three baseline algorithms which explore the possibility

of using existing techniques to solve this problem.

A. Inverted List based algorithm

The first baseline algorithm, called IL, only utilizes the

activities to prune the search space. Specifically, it aggregates

the activities associated with each point in a trajectory, and

then builds an inverted list for each activity. The basic idea

is to firstly filter out the trajectories in database that do not

contain all the activities specified in the query. Then for the

remaining candidates, we will sequentially process each of

them to compute the minimum match distance with respect to

the query, and then return the top-k results.

B. R-tree based algorithm

The second baseline method uses R-tree [21] as the indexing

structure to prune the search space in pure spatial dimension.

Firstly we treat the points of all trajectories as a point set and

index these points using an R-tree. Given a query Q, the base-

line traverses R-tree to find the nearest trajectory incrementally

in terms of the best match distance. The best match distance

(Dbm) between a query Q and a trajectory Tr is defined as the

sum distances from each query point in Q to its nearest point

232

in Tr, i.e., Dbm(Q,Tr) =
∑

q∈Q minDist(q, Tr), where

minDist(q, Tr) = minp∈Tr d(q, p).
It is easy to see that the best match distance always lower

bounds the minimum match distance, formally presented by

the following lemma.

Lemma 2: Dbm(Q,Tr) ≤ D(Q,Tr)mm

We can adapt the algorithm proposed in [20], which is

designed to answer the k-BCT query efficiently. Whenever the

next nearest trajectory is retrieved, we compute its minimum

match distance if it is a match with respect to Q. During the

process, we keep track of the k-th minimum match distance as

the threshold. If the best match distance of the next obtained

candidate exceeds this threshold, the algorithm can terminate

since it is guaranteed that all “unseen” trajectories will not

have the minimum match distance smaller than the current

top-k results, due to Lemma 2.

C. IR-tree based algorithm

The third baseline adopts the IR-tree [22] as the indexing

structure, which is used to support efficient spatial keyword

search on static point set. The IR-tree is essentially an R-tree

extended with inverted files [23]. Each leaf node in the IR-

tree contains a number of entries with the form (p, p.r, p.if),
where p refers to the pointer of a spatial object, p.r is the

bounding rectangle of p, and p.if is a pointer to an inverted

file for the text descriptions of the objects stored in this node.

Each non-leaf node R contains a number of entries of the

form (cp, cp.rect, cp.if) where cp is the address of a child

node of R, cp.rect is the MBR of all the rectangles in the

entries of child nodes, and cp.if is a pointer to an inverted

file for the union of the text descriptions of its child nodes. The

search algorithm based on IR-tree proceeds similarly with the

R-tree based method, i.e., trying to find the most spatially close

trajectories and then computing the minimum match distance

with respect to the query. The only modification is, before

probing the entries in a node of IR-tree, we first check its

inverted file to see if it contains any activity of the query. If

not, all the places enclosed in this node can be pruned directly.

By this means, this baseline is expected to examine fewer

nodes than the R-tree based method, thus can achieve better

efficiency.

IV. PROPOSED INDEXING STRUCTURE

In this paper, we propose a novel Grid index for Activity

Trajectories (GAT). Specifically, we construct a d-Grid by

dividing the entire spatial region into 2d×2d quad cells. Then

we further build (d − 1)-Grid,(d − 2)-Grid,...,1-Grid, which

will form a hierarchy of cells. Each cell can be assigned a

unique numerical ID by using space filling curve, which maps

multidimensional cells to 1-dimensional integer domain. As

shown in Figure 2(a), cell 1 to cell 16 form the 2-Grid, and

cell 17 to cell 20 form the 1-Grid. In addition, GAT consists of

the following four components, which are illustrated in Figure

2(b).

Hierarchical Inverted Cell List (HICL). To facilitate

identifying the regions that contain the query activities, we

firstly build an inverted list of cells in the d-Grid for each

activity α existing in the dataset. After that, we aggregate

the cells that belong to the same parent cell in the (d − 1)-
Grid to build a higher-level inverted cell list. By repeating the

above process until reaching the 1-Grid, we eventually build a

hierarchical inverted cell list for each activity. Next, we discuss

the storage of this structure.

Since the number of activities can be very large, maintaining

the entire HICL in the main memory may become infeasible.

In this case, we can just keep the high levels of the structure

within main memory and the low levels on the secondary

storage. More specifically, given a memory budget B, and

the cardinality of activity vocabulary C, we can estimate the

level h, the levels higher than which will be put on the

secondary storage, by choosing the largest integer h satisfying∑h

i=1 4
iC ≤ B, i.e., h = �log4(

3B
4C + 1)�.

Inverted Trajectory List (ITL). In each cell of the d-

Grid, we build an inverted trajectory list for each activity

α existing in this cell, which is a list of trajectory IDs

whose segment contains α within this cell. This structure

provides the activity information on the trajectory level, i.e.,

which trajectories contain α in this cell. Since it does not

keep the detailed information about individual points for each

trajectory, the size of ITL is much smaller compared to the

original dataset, and hence ITL can be accommodated within

the main memory of a mainstream server in most cases.

However, in the circumstances where only limited memory

is available, we can partition all the cells into fewer but

big blocks, save all the blocks in the secondary storage, and

then retrieve the block(s) around the query location into main

memory at query time.

Trajectory Activity Sketch (TAS). For each trajectory

Tr in the database, we build an activity sketch in the main

memory, which summarizes the activities contained in Tr by

using relatively small memory space. The purpose of this data

structure is to quickly filter out the trajectories whose activities

do not match the query requirement without retrieving all the

detail information from the disk.

To this end, we sort all the activities in the vocabulary

by their occurrence frequencies in the whole database, and

assign continuous numerical ID to each activity. Then for each

trajectory Tr, we partition its activity IDs into M intervals,

I = {I1, I2, ..., IM}, with the goal of minimizing the overall

size of the intervals, i.e.,
∑M

a=1 |Ia|, where |Ia| is defined as

the difference between the greatest and smallest IDs in Ia.

The reason of doing this is to make the intervals as compact

as possible so that the pruning effect can be maximized. The

choice of M can be made according to the memory budget.

Large M (i.e., more intervals) is expected to gain better

pruning effect. Since each interval only needs to keep two

integers (which cost 8 bytes), the total memory cost for N

trajectories is 8MN bytes.

To derive the desired partition, we first sort the activity

IDs for each trajectory, and then compute the gap between

consecutive IDs. Finally the top M−1 largest gaps are chosen

as the split positions to partition all activities into M intervals.

233

������	����	�

���������	�

����	����	

���������	�

�����������	�

�����������	�

����	����	

���������	�

���������	�

�����������	�

���������	�

���������	

������	����	�

�
�

�
�

�

�

�

�

�

�

	

��

��

��

��

�

��

��

��

�	

�
 ��

��

�����������	�

���������	�

�
�

���

�

�

���

�

�

�

��

�

�

�

��

��

��

��

��

��

��

��

����
�

����
�

�� 	���
�����
�

��
����
�

	���
�

����
�

�
� ���������	�

�
� �����������

�
� �������	���

���
���
���
���
���
������
���
���
������
���
	��
���

���
���
���
���
���
������
���
���
���
	��
���
���
���

���
������
���
���
������
���
	��
������
���
���
���

�
�

�
�

�
�

����������� ��!�!��"
� ��

���

��

#�$�%��!�&����������'��&��� #�$�(��&��������'�)��!���!��

�����������

�����������

����	����

Fig. 2: Grid index for activity trajectories, with illustration of the four components: (i) Hierarchical inverted cell list. (ii)

Trajectory activity sketch. (iv) Activity posting list.

It is not difficult to prove this is the optimal partition, since

relocating any split point (with gap g) to other places (with

gap g′) will result in increase by g− g′ on the overall size of

the intervals (g > g′).

Activity Posting List (APL). For each trajectory Tr in the

database, we construct an activity posting list for each activity

α existing in Tr, which is a list of the trajectory points that

contain α. This data structure is stored on disk due to its

high space requirement, and will be retrieved only when the

distance with the query needs to be evaluated.

V. PROPOSED SEARCH ALGORITHM

The basic structure of our proposed search algorithm is

illustrated by Algorithm 1. Firstly, we retrieve a set of λ

candidate trajectories, which contains some places nearby

any of the query locations and at least one of the query

activities. The second step is to validate each candidate if

it is a whole match with respect to the query. Finally we

compute the minimum match distance for each valid candidate

and insert it into the result set. During this process, we keep

track of k-th smallest minimum match distance (MMDk
mm)

found so far and a lower bounding distance (Dlb) for all

“unseen” trajectories. As long as Dk
mm < Dlb, the algorithm

can terminate safely since all the “unseen” trajectories are

impossible to become the top-k results. Otherwise we will

incrementally fetch more candidates and repeat the above

process again.

A. Candidate Retrieval

A candidate is a trajectory that is possible and seemingly

promising to become a result for the query. Since the query

trajectory can consist of several places spanning a large area,

we will obtain a set of candidates which are close to at least

one of the query locations and contain at least one of the query

activities at that location.

Algorithm 1: Search Algorithm Outline

Input: trajectory database D, query Q
Output: top-k result set R

1 while true do
2 CS ← ∅;
3 CS ← retrieve at least λ new candidates;
4 Dlb ← update the lower bounding distance;
5 for each Tr ∈ CS do
6 if Tr is a valid candidate then
7 Compute Dmm(Q,Tr) and put Tr into R;

8 Update Dk
mm and Dlb;

9 if Dk
mm < Dlb then

10 break;

11 Keep the topk results in R;
12 return R;

We adapt the best-first search paradigm to obtain the candi-

date set. Specifically, we maintain a priority queue PQ with

entries in the form of (mdist, cellID, q), where mdist is the

minimum distance from the cell c with cellID to the query

point q ∈ Q. mdist is used as the key to sort the entries

in PQ. The retrieval process starts from inserting all cells

in the highest level of HICL that contains any query activity

to PQ. Then similar with the best-first search, the algorithm

repeatedly dequeues the top entry of PQ, i.e., the one having

the smallest mdist with respect to some query point qi. If it is

not the leaf cell (the cell in the lowest level of HICL), inserts

its child cells that contains any activity in qi.Φ back to PQ.

This can be done by looking up the HICL for each α ∈ q.Φ
and take the union set of the cells in the inverted list. By this

means, the cells without any query activity will be pruned

automatically. Once the popped out entry refers to a leaf cell,

the algorithm checks the ITL (if exists) of this cell for each

Inverted trajectory list. (iii) posting list.

234

activity in q and put the trajectories in the ITL into a candidate

set CS. This procedure continues until CS contains at least

λ candidates.

B. Computing Lower Bound Distance

Another important task during the candidate retrieval pro-

cess is to maintain and update a lower bounding distance Dlb

for all “unseen” trajectories. A straightforward approach is to

directly use the mdist in the top entry of PQ, which obviously

is a lower bound for Dmm. However it is too loose to be useful

in practice. To develop a tighter lower bound, we use a set of

sorted lists, cellsn(qi), to keep track of the IDs of the m

nearest cells with respect to qi, which have not been visited

yet. At first, all the lists are initialized empty. Then whenever

an entry (mdist, cellID, qi) is dequeued from PQ, we first

remove cellID from cellsn(qi) (if it exists), and then insert

the IDs of its child cells, which contains any activity of qi.Φ,

into cellsn(qi). The cells in cellsn(qi) are sorted ascendingly

based on their mdist to qi, and only the first m cells are kept.

Now we propose to use these cells to derive a tighter lower

bounding distance, shown in Algorithm 2.

For the convenience of presentation, we only describe how

the lower bound Di
lb with respect to each qi is derived, and

Dlb is just the sum of Di
lb for all qi ∈ Q. First, for each

cell cj in cellsn(qi), we create a virtual point pj with all the

activities in cj , which can be acquired directly from ITL of

the index, and d(pj , q) = mdist(cj , q) (line 6). Then we use

these points to create a trajectory Tri = (p1, p2, ..., pm) and

compute the minimum point match distance Dmpm(qi, T ri)
by using the Algorithm 3 (line 7). Finally the smaller value

between Dmpm(qi, T ri) and d(qi, cm) is chosen as the lower

bound of Dmpm for all “unseen” trajectories (line 8).

Algorithm 2: Lower Bound Construction

Input: Q, cellsn(qi) for qi ∈ Q
Output: Dlb

1 mdist ← minimum distance in the top entry of PQ;
2 Dlb ← 0;
3 for each (qi,Φi) ∈ Q do
4 if cellsn(qi) is not empty then
5 for each cell cj in cellsn(qi) do
6 Create a point pj s.t. pj .Φ = cj .Φ and

d(qi, pj) = mdist(qi, cj);

7 Create a trajectory Tri = (p1, p2, ..., pm);
8 Dlb ← Dlb +min(Dmpm(qi, T ri), d(qi, pm);

9 else
10 Dlb ← Dlb +mdist;

11 return Dlb;

Theorem 1: Dlb derived by Algorithm 2 lower bounds

Dmm for all “unseen” trajectories in the database.

Proof: Since Dmpm is the minimum match distance we

can get given the virtual trajectory points and each virtual point

is the optimal one amongst all the points in the cell, Di
lb is

guaranteed to lower bound the minimum point match distance

between qi and all unvisited trajectories. Consequently, Dlb

lower bounds the minimum match distance between Q and all

unvisited trajectories.

C. Validating Candidates

This step validates each candidate trajectory whether it

contains all the activities specified by the query. Recall that

we have built a data structure, called trajectory activity sketch

(TAS), as a component of the index, which will be used to

prune a number of candidates without probing the original

trajectories on the disk. Given a candidate Tr ∈ CS, we firstly

check if its TAS enclose all the activities in the query, i.e.,

∀α ∈ Q.Φ, α.ID ∈ TAS(Tr). Clearly, this may introduce

false positives, i.e., the TAS covers the query activities but

the trajectory does not actually. However it guarantees that no

false dismissals will be introduced.

Consider the example in Figure 2. If Tr3 is retrieved as a

candidate, we can check that its activity sketch [b, c] ∪ [e, f]
does not contain the query activities a and d. Hence Tr3 is

not a valid candidate.

To further eliminate the false positives, we then obtain the

activity posting list (APL) for each remaining candidate to see

if there exists a posting list for each query activity. If yes, then

the trajectory is set to be valid; otherwise, it will be removed

from the candidate set.

D. Computing Minimum Match Distance

The last step is to compute the minimum match distance

with respect to Q for each valid candidate. According to

Lemma 1, it is equivalent to find the minimum point match

for each query point in Q. For the sake of simplicity, we just

describe the algorithm of computing the minimum point match

for a single query point in the sequel.

A straightforward way to evaluate the minimum match

distance is to enumerate all match point set in the candidate Tr

and find the one with the smallest distance with the query q.

Obviously this will involve a large number of combinations,

which makes the computation cost too high. We propose a

smarter and more efficient algorithm to compute the minimum

match distance, which can reduce the number of combinations

and terminate early.

The basic structure is illustrated in Algorithm 3. Given a

query point q ∈ Q and a valid candidate Tr, we firstly retrieve

the points in the activity posting list (APL) of Tr for each

α ∈ q.Φ into a candidate point set, denoted as CP . The points

in CP are then sorted according to their distances with respect

to q, the purpose of which is to terminate the algorithm early.

We also maintain a hash table H whose key is a subset of

the query keyword set and its value is the current minimum

match distance with respect to this keyword subset. Next the

algorithm sequentially processes each point p in CP . For each

point p, we only care about the set of keywords that overlap

with the query, denoted as p.Φ′, and push it into an FIFO

queue L. After that the algorithm iteratively pops out the first

entry of L (it is p.Φ′ at the beginning). If a better minimum

match for the keyword subset ks already exists in H, then no

update is needed. Besides, there is also no need to examine

235

the subsets of ks since there must be a better minimum match

for the subset as well. Otherwise, we update the current best

minimum match distance for ks to be the distance between p

and q, and at the same time put all the (|ks|−1)-size subsets of

ks into L. Since the minimum match distance for keyword set

ks has changed, the minimum match distance for the superset

of ks may be affected as well. To ensure the minimum match

distances for all existing keyword sets up-to-date, we retrieve

each keyword set s from H, generate a new keyword set key

which is the union of s and ks, and update the minimum

match distance for key if necessary. Note that the keyword

set that is a subset or superset of ks can be skipped safely,

since in either case, i.e., key = s or key = ks, we have

H[key] < H[s] +H[ks].

The early termination condition of Algorithm 3 lies in the

beginning of each iteration of the candidate points CP (line

5). The algorithm can terminate if the distance between q and

the next unchecked point of CP is greater than Dmpm. This

ensures that all the unchecked points in CP cannot lead to

a better minimum match distance since the distance between

qi and any of those single points already exceeds the current

Dmpm.

Algorithm 3: Minimum Point Match Distance

Input: query point q, candidate Tr
Output: Dmpm(q, T r)

1 CP ← the points in Tr.APL for α ∈ q.Φ;
2 Sort the points of CP by the distance with q;
3 Initialize a hash table H to store the current minimum match

distance for each subset of query keywords;
4 for each point p ∈ CP do
5 if H.hasKey(q.Φ) and H[q.Φ] ≤ d(p, q) then
6 Break;

7 p.Φ′ ← p.Φ ∩ q.Φ;
8 Initialize an FIFO queue L to store the subsets of p.Φ′;
9 L.push(p.Φ′);

10 while ks← L.pop() do
11 if H.hasKey(ks) and H[ks] ≤ d(p, q) then
12 Continue;

13 else
14 H[ks]← d(p, q);
15 Push all the (|ks| − 1)-size subsets of ks into L;
16 for each s ∈ H.keys do

17 if ks � s and s � ks then
18 key ← ks ∪ s;
19 H[key]← min{H[key],H[s] +H[ks]};

20 return Dmpm(q, T r) = H[q.Φ];

Now we use the following example to illustrate how Dmpm

is computed, where the query point q has the activity set

{a, b, c, d}. We assume all the points in CP are already sorted

according to their distances to q. The algorithm will process

each point sequentially and update H, Dmpm when necessary.

The intermediate status of the hash table H is shown in the

right column of Table II.

TABLE II: Example of Dmpm computation

CP d(p, q) Updates of H Dmpm

p1 : {a} 10 {a} : 10
p2 : {b, c} 11 {b} : 11, {c} : 11, {b, c} :

11, {a, b} : 21, {a, c} : 21,
{a, b, c} : 21

p3 : {a, b} 13 {a, b} : 13
p4 : {d} 15 {d} : 15, {a, d} : 25,

{b, d} : 26, {c, d} : 26,
{b, c, d} : 26,
{a, b, d} : 28,
{a, c, d} : 36,
{a, b, c, d} : 36

36

p5 : {c, d} 17 {c, d} : 17, {a, c, d} : 27,
{a, b, c, d} : 30

30

p6 : {a, b, c} 26 no update since
H[{a, b, c}] = 21 < 26

p7 : {a, b, c, d} 31 algorithm can stop now
since Dmpm = 30 < 31

VI. ORDER-SENSITIVE QUERY EXTENSION

The similarity query defined in Section II does not take into

account the order of the query points. In other words, as long

as a trajectory matches all the query activities, it is regarded

as a whole match to the query. Though this definition offers

some flexibility, sometimes the user may be more interested in

the trajectories whose activity order is the same as the query’s.

In this section, we extend the ATSQ to be order-sensitive, and

develop novel algorithms to address the new challenge brought

by this extension.

A. Order-sensitive Similarity Query

Definition 7 (Order-sensitive Match): Given a query Q, we

say another trajectory Tr is an order-sensitive match of Q if

for each query point qi ∈ Q, we can find a point match Pi

from Tr. Besides, the order of the point matches complies

with the respective query points, which means for any pair

of query points qi, qj (i < j), the index of any point in Pi

must be smaller than or equal to the index of any point in

Pj . The set of point matches forms the order-sensitive match,

denoted by Tr.OM(Q). The order-sensitive match distance is

the sum of point match distances, i.e., Dom(Q, Tr.OM(Q)) =∑
qi∈Q Dpm(qi, Pi).
Similarly, we can define the minimum order-sensitive match

Tr.MOM(Q) to be the one with the smallest Dom, which is

called the minimum order-sensitive match distance between Q

and Tr, denoted as Dmom(Q,Tr).
In the running example of Figure 1, the minimum point

matches Tr1.MPM(q1) : {p1,2, p1,3} and Tr1.MPM(q2) :
{p1,1, p1,2} do not comply with the order of q1, q2. Hence

they cannot constitute the order-sensitive match. Instead,

{{p1,2, p1,3}, {p1,4, p1,5}, {p1,5}} is an order-sensitive match,

and easy to verify that, it is also the minimum order-sensitive

match. On the other hand, Tr2.MOM(Q) is the same as

Tr2.MM(Q).
Order-sensitive Activity Trajectory Similarity Query

(OATSQ). Given an activity trajectory set D, a query trajec-

236

tory Q, a positive integer k, an order-sensitive activity trajec-

tory similarity query (OATSQ) returns k distinct trajectories

from D that have the smallest Dmom(Q,Tr).

B. Retrieving and Validating Candidates

It is not hard to observe that the relationship between

the minimum point match distance and the minimum match

distance stated by Lemma 1 does not hold any more for order-

sensitive match distance. This is because the minimum point

matches may not comply with the order of the query. In some

circumstances, there is no order-sensitive match even though

the point match exists for each query point. However, the

minimum match distance can serve as a lower bound for the

minimum order-sensitive match distance, formally stated as

the following lemma.

Lemma 3: Given a query Q and a trajectory Tr,

Dmm(Q,Tr) always lower bounds Dmom(Q,Tr). Besides,

this lower bound is tight.

Proof: Since Dmm(Q,Tr) is yielded by choosing the

minimum point match for each query point, changing to

any other point match will result in increase of the overall

distance. Besides, when these minimum point matches comply

with the order of activities in the query, Dmm(Q,Tr) =
Dmom(Q,Tr), so the lower bound is tight.

Based on Lemma 3, we can still adopt the algorithm de-

scribed in Section V to retrieve the candidates since the lower

bound distance for the “unseen” trajectories still applies. After

that, the candidates are validated in a similar way as in ATSQ,

i.e., checking TAS and then APL of the candidate to see if it

contains all the query activities. This is sufficient for ATSQ to

ensure all the valid candidates will be the matches with respect

to the query definitely. However, for OATSQ a candidate

surviving the above check may not be an order-sensitive match

to the query due to the additional order constraint. As we

shall see in the next subsection, evaluation of Dmom is more

complex and expensive than Dmm, hence further validation is

needed to eliminate more invalid candidates.

To this end, for each query point qi, we look up the APL

of the candidate Tr to find out all the points that contain any

of the activities in qi.Φ. Then only the smallest and greatest

position indexes of these points are kept, which are called the

matching index bound of qi, denoted by MIB(qi) = [lb, ub].
Finally we compare the MIBs of every pair of query points.

If there exist two query points qi, qj ∈ Q (i < j) such that

MIB(qi).lb > MIB(qj).ub, then Tr can be eliminated from

the candidate set since the point matches for qi and qj cannot

comply the order of qi → qj .

C. Computing Minimum Order-sensitive Match Distance

Computing Dmom is more challenging than Dmm since we

need to make the order of point matches consistent with the

query and try to minimize the match distance at the same

time. A straightforward approach is to find out all the point

matches for each query point and then try all the possible

combinations to find the one with the smallest match distance

and satisfying the order constraint. Clearly this approach is

not efficient especially when the query trajectory is long and

each query point has many point matches. In the sequel, we

propose a more efficient solution using dynamic programming.

Given a query Q : {q1, q2, ..., qm} and a valid candidate

trajectory Tr : {p1, p2, ..., pn}, we define an m× n matrix G

such that its element G(i, j) (1 ≤ i ≤ m, 1 ≤ j ≤ n) rep-

resents the Dmom between the sub-query Q[1, i] : {q1, ..., qi}
and the sub-trajectory Tr[1, j] : {p1, ..., pj}. Now what we

need to do is construct the matrix G until it is filled up, and

then G[m,n] holds the desired value of Dmom between Q and

Tr.

First, we observe the following relationship between a

structure and its sub-structures exists in G,

G(i, j) = min
1≤k≤j

{G(i− 1, k) +Dmpm(qi, T r[k, j])} (1)

where Dmpm is the minimum point match distance between

qi and the sub-trajectory Tr[k, j], which can be computed by

the algorithm described in Section V-D.

Intuitively, G(i, j) can be derived by minimizing the Dmom

between the first i − 1 query points and the sub-trajectory

Tr[1, k] plus the minimum point match distance between qi
and the sub-trajectory Tr[k, j]. It is guaranteed to be an order-

sensitive match since qi is restricted to match the part Tr[k, j]
which is successor of Tr[1, k].

Lemma 4: Matrix G has the following two monotonicity

properties: 1) If j′ > j, G(i, j) ≥ G(i, j′); 2) If i′ > i,

G(i, j) ≤ G(i′, j).
Proof: 1) j′ > j means Tr[1, j] ⊂ Tr[1, j′]. So for

the same sub-query Q[1, i], it is possible to find a better

match that has smaller match distance. 2) i′ > i means

Q[1, i] ⊂ Q[1, i′]. With the same sub-trajectory Tr[1, j], more

point match distances are contributed to the overall match

distance. Another possibility is that no order-sensitive match

exists for Q[i, j′]. In either case, G(i′, j) cannot be smaller

than G(i, j).
The computation process is illustrated in Algorithm 4. At

the beginning we initialize a guardian row of G to be zero for

the implementation convenience. Then the algorithm iterates

each row and column to fill G progressively. For each pair

(i, j), G(i, j) is firstly initialized to be the greatest value.

Then with k ranges from j to 1, G(i, j) will be updated once

a smaller value is obtained based on Eq. (1). Note that the

iterator k is decremented from j, which has two benefits. First,

the evaluation of Dmpm can be done incrementally since only

one more point is added to Tr[k, j] each time. Second, once

G(i−1, k) = +∞, we can break the loop since G(i−1, k′) is

also infinite for any k′ < k (based on Lemma 4). Besides, line

9 is an early termination condition, in which after G(i, |Tr|)
is derived for each i, we compare it against the current k-th

smallest Dmom in the result set. If the value already exceeds

Dk
mom, it is assured that G(|Q|, |Tr|) > Dk

mom due to Lemma

4, hence there is no need to continue the computation.

Finally we use the example in Figure 1 to demonstrate how

our algorithm works. In order to compute the Dmom between

237

Algorithm 4: Minimum Order-sensitive Match Distance

Input: query Q, candidate Tr, the k-th smallest Dmom found
so far Dk

mom

Output: Dmom(Q,Tr)
1 G(0, ∗)← 0;
2 for i = 1 to |Q| do
3 for j = 1 to |Tr| do
4 G(i, j)← +∞;
5 for k = j to 1 do
6 if G(i− 1, k)
= +∞ then
7 Evaluate Dmpm(qi, T r[k, j]);
8 Update G(i, j) according to Eq.(1);

9 if G(i, |Tr|) > Dk
mom then

10 return

11 return G(|Q|, |Tr|);

Q and Tr1, we will fill the matrix G(i, j) progressively. First

we compute the entries G(1, 1), G(1, 2), ..., G(1, 5), which

is equivalent to computing the minimum point match dis-

tances between q1 and sub-trajectories Tr1[1 : 1], T r1[1 :
2], ..., T r1[1 : 5] respectively. The results are shown in the

first column of Table III. After that we set i = 2 to include

the second query point q2 and increases j from 1 to 5.

To exemplify this, suppose the next entry to be evaluated

is G(2, 3). We iterate the variable k from 3 downto 1.

When k = 3, G(1, 3) + Dmpm(q2, {p1,3}) = +∞ since

p1,3 is not a point match of q2. When k = 2, we find

G(1, 2) = +∞ so it is safe to conclude G(2, 3) = +∞
according to Lemma 4. Similarly when j = 5, we can get

G(2, 5) = G(2, 4) + Dmpm(q2, {p1,4, p1,5}) = 55. Table III

presents all the entry values after G is filled and G(3, 5) holds

the value of Dmom between Q and Tr1.

TABLE III: Example of Dmom computation

G(i, j) j = 1 j = 2 j = 3 j = 4 j = 5
i = 1 +∞ +∞ 24 24 24

i = 2 +∞ +∞ +∞ +∞ 55

i = 3 +∞ +∞ +∞ +∞ 56

VII. EXPERIMENTS

We conduct extensive experiments on real trajectory datasets

to study the performance of the proposed index and query

algorithms.

A. Experimental Settings

We use two real activity trajectory datasets by crawling the

online check-in records of Foursquare within the areas of Los

Angeles (LA) and New York (NY) [24]. Each check-in record

of Foursquare contains the user ID, venue with geo-location

(place of interest), time of check-in, and the tips written in

plain English. We put the records belonging to the same user

in the chronological order to form the trajectory of this user.

The activity set for each place of a trajectory is generated by

TABLE IV: Statistics of datasets

LA NY

#trajectory 31,557 49,027

#venue 215,614 206,416

#activity 3,164,124 2,056,785

#distinct activity 87,567 64,649

the words/phrases in the tips associated with the location. The

detailed statistics of the two datasets are given in Table IV.

We will compare time cost of the proposed methods (GAT)

against the three baseline approaches introduced in Section

III, namely inverted list based algorithm (IL), R-tree based

algorithm (RT), and IR-tree based algorithm (IRT). Note that

the four algorithms only differ in the index structure and how

they retrieve candidates, and they will use the same algorithms

to compute the minimum match distance (Section V-D) and

minimum order-sensitive match distance (Section VI-C).

TABLE V: Default parameter values

Parameter Default value

#results k 9
#query points |Q| 4
#query activities per location |q.Φ| 3
the diameter of query δ(Q) 10km

By default, we build a d-Grid with d = 8 for the trajectory

dataset, which means the entire space is partitioned into 28×28

cells. We keep the hierarchical cells from level 1 (d = 1) to

level 6 (d = 6) within main memory, and store the two lowest

levels (d = 7, 8) on hard disk. The default values for other

parameters are summarized in Table V. In the experiments,

we will vary these values to investigate the effect of each

parameter. For each set of experiment, we generate 50 queries

and report the average running time. Each query is generated

by randomly choosing a trajectory from the dataset, and then

selecting the desired number of locations and activities. All

the algorithms including the baselines are implemented in Java

and run on a PC with Intel Duo-Core 3GHz CPU and 4GB

memory.

B. Performance Evaluation

Effect of k. In the first set of experiments, we study the

effect of the intended number of results k by plotting the

average time costs of ATSQ and OATSQ on both LA and

NY datasets. As shown in Figure 3, our proposed indexing

approach, GAT, significantly outperforms all other three base-

line indexing methods on both datasets. In particular, GAT is at

least one order of magnitude faster than IL and 4–5 times faster

than RT and IRT. Since IL finds all the trajectory candidates

that match the query activities first and then compute the

match distance for these candidates, the running time remains

constant for all values of k. The other three methods, on the

other hand, incur higher cost as k increases. This is expected

since the kth smallest match distance becomes greater, which

means more candidates need to be retrieved and refined. We

also observe that, though the NY dataset has more trajectories,

all algorithms except RT run faster than on LA dataset. This is

238

 0

 5

 10

 15

 20

 25

 30

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

k

IL
RT

IRT
GAT

(a) ATSQ on LA

 0

 5

 10

 15

 20

 25

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

k

IL
RT

IRT
GAT

(b) ATSQ on NY

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

k

IL
RT

IRT
GAT

(c) OATSQ on LA

 0

 5

 10

 15

 20

 25

 30

 35

5 10 15 20 25

R
un

ni
ng

 ti
m

e
(s

)

k

IL
RT

IRT
GAT

(d) OATSQ on NY

Fig. 3: Effect of k

because trajectories of LA contain more activities averagely,

resulting in more candidates matching the query activities. But

RT only uses spatial information of trajectories to prune the

search space, so it tends to be less effective on larger dataset.

 0

 5

 10

 15

 20

 25

 30

 35

2 3 4 5 6

R
un

ni
ng

 ti
m

e
(s

)

#query points

IL
RT

IRT
GAT

(a) ATSQ on LA

 0

 5

 10

 15

 20

 25

 30

 35

2 3 4 5 6

R
un

ni
ng

 ti
m

e
(s

)

#query points

IL
RT

IRT
GAT

(b) ATSQ on NY

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2 3 4 5 6

R
un

ni
ng

 ti
m

e
(s

)

#query points

IL
RT

IRT
GAT

(c) OATSQ on LA

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 3 4 5 6

R
un

ni
ng

 ti
m

e
(s

)

#query points

IL
RT

IRT
GAT

(d) OATSQ on NY

Fig. 4: Effect of |Q|

Effect of |Q|. Next we study the query performance when

the number of query locations, |Q|, is varying. The results

are presented in Figure 4. Again, our proposed method has

superior performance than all baseline approaches. With the

increase of query points, RT,IRT and GAT incur more time

cost since they all utilize spatial index to retrieve candidates

around each query point. Hence more query points will result

in more candidates retrieved. However, IL behaves differently

for ATSQ and OATSQ. IL runs faster for ATSQ when more

query points are issued because there are fewer candidates

matching all the query activities. Though this is also the case

for OATSQ, the runtime cost still increases mainly due to the

higher computation cost of Domo with more query locations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 3 4 5

R
un

ni
ng

 ti
m

e
(s

)

#activity per query point

IL
RT

IRT
GAT

(a) ATSQ on LA

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5

R
un

ni
ng

 ti
m

e
(s

)

#activity per query point

IL
RT

IRT
GAT

(b) ATSQ on NY

 0

 10

 20

 30

 40

 50

1 2 3 4 5

R
un

ni
ng

 ti
m

e
(s

)

#activity per query point

IL
RT

IRT
GAT

(c) OATSQ on LA

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 3 4 5

R
un

ni
ng

 ti
m

e
(s

)

#activity per query point

IL
RT

IRT
GAT

(d) OATSQ on NY

Fig. 5: Effect of |q.Φ|

Effect of |q.Φ|. Then we investigate the query performance

with regard to the number of activities at each query location,

i.e., |q.Φ|. The results are shown in Figure 5. We observe

that all approaches except RT consumes less time when |q.Φ|
increases. This is due to the fact that all the three methods

make use of activity information when they search for candi-

dates. Therefore more query activities means fewer candidates

retrieved and thus less distance computation cost. On the other

hand, RT does not incorporate any activity information into

the indexing structure, so the candidate retrieval process is

not affected by this parameter. However, with more query

activities, the k-th smallest Dmm or Dmom tend to be greater,

which means it needs to check more candidates before the

result set can be decided.

Effect of δ(Q). We now proceed to examine the effect

of the distribution of query locations. To quantify this fac-

tor, we define the diameter of query, δ(Q), which is the

maximum distance amongst all pairs of query points, i.e.,

δ(Q) = maxqi,qj∈Q d(qi, qj). Query with greater diameter is

more widely spread over the space. We choose the queries with

diameters varying from 5km to 50km and plot the average

running time of all approaches in Figure 6. As we can see

IL is not affected by this parameter since it does not take into

account any geometric property of the query when performing

the search. All other three methods become less efficient when

the query points are more distant with each other. This is

239

 0

 5

 10

 15

 20

 25

 30

5km 10km 20km 30km 50km

R
un

ni
ng

 ti
m

e
(s

)

query diameter

IL
RT

IRT
GAT

(a) ATSQ on LA

 0

 5

 10

 15

 20

 25

5km 10km 20km 30km 50km

R
un

ni
ng

 ti
m

e
(s

)

query diameter

IL
RT

IRT
GAT

(b) ATSQ on NY

 0

 5

 10

 15

 20

 25

 30

 35

 40

5km 10km 20km 30km 50km

R
un

ni
ng

 ti
m

e
(s

)

query diameter

IL
RT

IRT
GAT

(c) OATSQ on LA

 0

 5

 10

 15

 20

 25

 30

 35

5km 10km 20km 30km 50km

R
un

ni
ng

 ti
m

e
(s

)

query diameter

IL
RT

IRT
GAT

(d) OATSQ on NY

Fig. 6: Effect of δ(Q)

expected since these methods retrieve the trajectories close

to any query point. When the query is more spreaded, more

trajectories will be retrieved as candidates.

 0

 5

 10

 15

 20

 25

10K 20K 30K 40K 50K

R
un

ni
ng

 ti
m

e
(s

)

dataset size

IL
RT

IRT
GAT

(a) ATSQ

 0

 5

 10

 15

 20

 25

 30

 35

10K 20K 30K 40K 50K

R
un

ni
ng

 ti
m

e
(s

)

dataset size

IL
RT

IRT
GAT

(b) OATSQ

Fig. 7: Effect of |D|

Effect of |D|. We also evaluate the scalability of all the

approaches. In order to do that, we sample the NY dataset to

generate datasets with different number of trajectories varying

from 10K to (approx.) 50K, and report the average running

time in Figure 7. Without surprise, the time costs of all four

methods increase linearly/sublinearly with respect to the size

of dataset. But it is worth to note that our proposed method

scales much better than the others on both ATSQ and OATSQ.

Effect of partition granularity. Finally we study the effect

of the partition granularity of the grid index. Recall that by

default we partition the entire space into 256×256 cells (d =
8). In this set of experiments, we set the number of partitions

to 32 × 32(d = 5), 64 × 64(d = 6), 128 × 128(d = 7) and

256 × 256(d = 8) and record the respective running time

of ATSQ and OATSQ and memory cost of GAT. The results

are shown in Figure 8. Generally, better performances will be

achieved for both ATSQ and OATSQ by using the GAT index

with finer granularity since tighter distance lower bound for

 0

 5

 10

 15

 20

32 64 128 256
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

R
un

ni
ng

 ti
m

e
(s

)

M
em

or
y

co
st

 (
M

B
)

#partition

ATSQ
OATSQ

Memory cost

(a) LA

 0

 5

 10

 15

 20

32 64 128 256
 0

 50

 100

 150

 200

 250

 300

 350

 400

R
un

ni
ng

 ti
m

e
(s

)

M
em

or
y

co
st

 (
M

B
)

#partition

ATSQ
OATSQ

Memory cost

(b) NY

Fig. 8: Effect of partition granularity

“unseen” trajectories can be derived with smaller sized cells.

But this performance improvement is not so obvious especially

when the partition number is beyond 64. This is because, with

more partitions, GAT has more levels in the HICL structure,

which requires more queue operations (enqueue and dequeue

of cells) and neutralizes the benefit gained by the tighter lower

bound. The memory cost of the index increases when more

cells are built since both HICL and ITL in GAT require more

memory. But recall that we only keep the cells in the levels

d > 6 of HICL on the disk. That means only ITL needs more

memory for the cells below this level, which explains the slight

increase in memory cost when the partition number is more

than 64.

VIII. RELATED WORK

Spatial Keyword Search. Searching spatial objects associ-

ated with textual information have gained significant attentions

due to the prevalence of spatial web objects on the Internet.

The earliest work studying the spatial keyword search problem

includes [25][26][27], which retrieve web documents relevant

to a keyword query within a pre-specified spatial region. These

proposals use loose combinations of an inverted file and a

spatial index (e.g., R-tree). The query processing in these

proposals occurs in two stages: One type of indexing (e.g.

inverted list) is used to filter web document in the first stage,

and then the other index (e.g. R-tree) is employed, or the

vice versa. This index has the disadvantage that it cannot

simultaneously prune the search space using both keywords

and spatial distance. More recently, a location-aware top-k

text retrieval (LkT) query is proposed [22], where the text

relevancy to a query is computed by means of language

model and a probabilistic ranking function. A new index-

ing framework, IR-tree that integrates location indexing and

text indexing has been developed to efficiently process this

query. Variants of LkT query including MkSK query [28]

and RSTkNN query [29] have also been proposed. Cao et

al. [30] propose a location-aware top-k prestige-based text

retrieval (LkPT) query, to retrieve the top-k spatial web

objects ranked according to both prestige-based text relevance

(PR) and location proximity. Zhang et al. [31][32] introduced

the m-closest keyword query (mCK query) which aims at

finding the closest objects that match the query keywords.

Cao et al. [33] propose a different semantics is taken such

that the group of objects in the result covers the query’s

240

keywords and has the lowest cost. Yao et al. [34] tackled

the problem of answering approximate string match queries in

spatial databases. Roy and Chakrabarti [35] studied type-ahead

search in spatial databases using materialization techniques.

Li et al. [36] studied the problem of direction-aware spatial

keyword search, which aims at finding the k nearest neighbors

to the query that contain all input keywords and satisfy the

direction constraint.

To the best of our knowledge, there is only one work

considering the fusion of keywords and trajectories [37].

But in their work, keywords are associated with the whole

trajectory rather than each individual point. Hence both the

similarity function and the query processing algorithms are

quite different from the proposals in our paper.

Trajectory Similarity Search. Due to the structural

complexity of trajectory data, measuring the similarity be-

tween trajectories is not a straightforward task. There-

fore many different similarity functions and algorithms ex-

ist to compute the similarity between time series/trajectory

data [16][17][18][6][7][19][20]. In particular, the similarity

query proposed in [20] is more similar to our work, in

which they use multiple locations as the query to search for

trajectories that “best match” these locations. However, since

they only consider the spatial property of trajectories, their

techniques cannot be applied to our problem.

IX. CONCLUSION

This paper studies the problem of efficient similarity search

on the trajectories associated with activity information, given

multiple query locations with activity requirement. Two types

of queries, ATSQ and OATSQ, are proposed depending on

whether the order of query points is considered. To support

efficient query processing, we develop a novel hybrid grid

index called GAT, and propose efficient algorithms to compute

the minimum match distance and minimum order-sensitive

match distance between a query and a trajectory. Extensive

experimental results based on real datasets demonstrate that

the proposed method outperforms several baseline algorithms

significantly and achieves good scalability.

ACKNOWLEDGEMENT

This work was supported by ARC grants DP120102829 and

DP110103423.

REFERENCES

[1] D. Pfoser, C. Jensen, and Y. Theodoridis, “Novel approaches to the
indexing of moving object trajectories,” in VLDB, 2000, pp. 395–406.

[2] Y. Cai and R. Ng, “Indexing spatio-temporal trajectories with chebyshev
polynomials,” in SIGMOD, 2004, pp. 599–610.

[3] J. Ni and C. Ravishankar, “Indexing spatio-temporal trajectories with
efficient polynomial approximations,” TKDE, vol. 19, no. 5, pp. 663–
678, 2007.

[4] V. Chakka, A. Everspaugh, and J. Patel, “Indexing large trajectory data
sets with seti,” in CIDR, 2003.

[5] P. Cudre-Mauroux, E. Wu, and S. Madden, “Trajstore: An adaptive
storage system for very large trajectory data sets,” in ICDE, 2010, pp.
109–120.

[6] M. Vlachos, D. Gunopoulos, and G. Kollios, “Discovering similar
multidimensional trajectories,” in ICDE, 2002, p. 0673.

[7] L. Chen, M. Özsu, and V. Oria, “Robust and fast similarity search for
moving object trajectories,” in SIGMOD, 2005, pp. 491–502.

[8] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Nearest
neighbor search on moving object trajectories,” SSTD, pp. 328–345,
2005.

[9] K. Zheng, G. Trajcevski, X. Zhou, and P. Scheuermann, “Probabilistic
range queries for uncertain trajectories on road networks,” in EDBT,
2011, pp. 283–294.

[10] K. Zheng, Y. Zheng, X. Xie, and X. Zhou, “Reducing uncertainty of
low-sampling-rate trajectories,” in ICDE, 2012.

[11] J. Lee, J. Han, and K. Whang, “Trajectory clustering: a partition-and-
group framework,” in SIGMOD, 2007, p. 604.

[12] H. Jeung, M. Yiu, X. Zhou, C. Jensen, and H. Shen, “Discovery of
convoys in trajectory databases,” Proceedings of the VLDB Endowment,
vol. 1, no. 1, pp. 1068–1080, 2008.

[13] H. Jeung, H. Shen, and X. Zhou, “Convoy queries in spatio-temporal
databases,” in ICDE, 2008, pp. 1457–1459.

[14] Z. Li, B. Ding, J. Han, and R. Kays, “Swarm: Mining relaxed temporal
moving object clusters,” Proceedings of the VLDB Endowment, vol. 3,
no. 1-2, pp. 723–734, 2010.

[15] K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang, “On discovery of
gathering patterns from trajectories,” in ICDE, 2013.

[16] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in
sequence databases,” FDOA, pp. 69–84, 1993.

[17] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence
matching in time-series databases,” ACM SIGMOD Record, vol. 23,
no. 2, pp. 419–429, 1994.

[18] B. Yi, H. Jagadish, and C. Faloutsos, “Efficient retrieval of similar time
sequences under time warping,” in ICDE, 2002, pp. 201–208.

[19] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance,”
in VLDB, 2004, pp. 792–803.

[20] Z. Chen, H. Shen, X. Zhou, Y. Zheng, and X. Xie, “Searching trajectories
by locations: an efficiency study,” in SIGMOD, 2010, pp. 255–266.

[21] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
ACM Sigmod Record, vol. 14, no. 2, pp. 47–57, 1984.

[22] G. Cong, C. Jensen, and D. Wu, “Efficient retrieval of the top-k most
relevant spatial web objects,” Proceedings of the VLDB Endowment,
vol. 2, no. 1, pp. 337–348, 2009.

[23] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM

Computing Surveys, vol. 38, no. 2, pp. 1–56, 2006.
[24] J. Bao, Y. Zheng, and M. Mokbel, “Location-based and preference-aware

recommendation using sparse geo-social networking data,” in ACM GIS,
2012.

[25] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W. Ma, “Hybrid index structures
for location-based web search,” in CIKM, 2005, pp. 155–162.

[26] R. Hariharan, B. Hore, C. Li, and S. Mehrotra, “Processing spatial-
keyword (sk) queries in geographic information retrieval (gir) systems,”
in SSDBM, 2007, pp. 16–16.

[27] I. De Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial
databases,” in ICDE, 2008.

[28] D. Wu, M. Yiu, C. Jensen, and G. Cong, “Efficient continuously moving
top-k spatial keyword query processing,” in ICDE, 2011.

[29] J. Lu, Y. Lu, and G. Cong, “Reverse spatial and textual k nearest
neighbor search,” in SIGMOD, 2011.

[30] X. Cao, G. Cong, and C. Jensen, “Retrieving top-k prestige-based
relevant spatial web objects,” Proceedings of the VLDB Endowment,
vol. 3, no. 1-2, pp. 373–384, 2010.

[31] D. Zhang, Y. Chee, A. Mondal, A. Tung, and M. Kitsuregawa, “Keyword
search in spatial databases: Towards searching by document,” in ICDE,
2009, pp. 688–699.

[32] D. Zhang, B. Ooi, and A. Tung, “Locating mapped resources in web
2.0,” in ICDE, 2010, pp. 521–532.

[33] X. Cao, G. Cong, C. Jensen, and B. Ooi, “Collective spatial keyword
querying,” in SIGMOD, 2011.

[34] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou, “Approximate string
search in spatial databases,” in ICDE, 2010, pp. 545–556.

[35] S. Roy and K. Chakrabarti, “Location-aware type ahead search on spatial
databases: semantics and efficiency,” in SIGMOD, 2011, pp. 361–372.

[36] G. Li, J. Feng, and J. Xu, “Desks: Direction-aware spatial keyword
search,” in ICDE, 2012.

[37] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis, “User
oriented trajectory search for trip recommendation,” in EDBT, 2012.

241

